3.128 \(\int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx\)

Optimal. Leaf size=352 \[ x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {\log \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{4 \sqrt {2} a}+\frac {\log \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{4 \sqrt {2} a}-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}+\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{2 \sqrt {2} a}+\frac {\tan ^{-1}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a} \]

[Out]

(1-1/a/x)^(7/8)*(1+1/a/x)^(1/8)*x+1/2*arctan((1+1/a/x)^(1/8)/(1-1/a/x)^(1/8))/a+1/2*arctanh((1+1/a/x)^(1/8)/(1
-1/a/x)^(1/8))/a-1/4*arctan(1-(1+1/a/x)^(1/8)*2^(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)+1/4*arctan(1+(1+1/a/x)^(1/8)*
2^(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)-1/8*ln(1+(1+1/a/x)^(1/4)/(1-1/a/x)^(1/4)-(1+1/a/x)^(1/8)*2^(1/2)/(1-1/a/x)^
(1/8))/a*2^(1/2)+1/8*ln(1+(1+1/a/x)^(1/4)/(1-1/a/x)^(1/4)+(1+1/a/x)^(1/8)*2^(1/2)/(1-1/a/x)^(1/8))/a*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 352, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 13, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.300, Rules used = {6170, 94, 93, 214, 212, 206, 203, 211, 1165, 628, 1162, 617, 204} \[ x \left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{\frac {1}{a x}+1}-\frac {\log \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{4 \sqrt {2} a}+\frac {\log \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{4 \sqrt {2} a}-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}+\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}+1\right )}{2 \sqrt {2} a}+\frac {\tan ^{-1}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{\frac {1}{a x}+1}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcCoth[a*x]/4),x]

[Out]

(1 - 1/(a*x))^(7/8)*(1 + 1/(a*x))^(1/8)*x - ArcTan[1 - (Sqrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8)]/(2*S
qrt[2]*a) + ArcTan[1 + (Sqrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8)]/(2*Sqrt[2]*a) + ArcTan[(1 + 1/(a*x))
^(1/8)/(1 - 1/(a*x))^(1/8)]/(2*a) + ArcTanh[(1 + 1/(a*x))^(1/8)/(1 - 1/(a*x))^(1/8)]/(2*a) - Log[1 - (Sqrt[2]*
(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8) + (1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)]/(4*Sqrt[2]*a) + Log[1 + (S
qrt[2]*(1 + 1/(a*x))^(1/8))/(1 - 1/(a*x))^(1/8) + (1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)]/(4*Sqrt[2]*a)

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 214

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
 2]]}, Dist[r/(2*a), Int[1/(r - s*x^(n/2)), x], x] + Dist[r/(2*a), Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a,
 b}, x] && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 6170

Int[E^(ArcCoth[(a_.)*(x_)]*(n_)), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /
; FreeQ[{a, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int e^{\frac {1}{4} \coth ^{-1}(a x)} \, dx &=-\operatorname {Subst}\left (\int \frac {\sqrt [8]{1+\frac {x}{a}}}{x^2 \sqrt [8]{1-\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x-\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt [8]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{7/8}} \, dx,x,\frac {1}{x}\right )}{4 a}\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x-\frac {2 \operatorname {Subst}\left (\int \frac {1}{-1+x^8} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{a}\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x+\frac {\operatorname {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{a}+\frac {\operatorname {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{a}\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x+\frac {\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x+\frac {\tan ^{-1}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{4 a}+\frac {\operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{4 a}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x+\frac {\tan ^{-1}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}-\frac {\log \left (1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}+\frac {\log \left (1+\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}+\frac {\operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}-\frac {\operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}\\ &=\left (1-\frac {1}{a x}\right )^{7/8} \sqrt [8]{1+\frac {1}{a x}} x-\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}+\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 \sqrt {2} a}+\frac {\tan ^{-1}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}+\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}\right )}{2 a}-\frac {\log \left (1-\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}+\frac {\log \left (1+\frac {\sqrt {2} \sqrt [8]{1+\frac {1}{a x}}}{\sqrt [8]{1-\frac {1}{a x}}}+\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{4 \sqrt {2} a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 56, normalized size = 0.16 \[ \frac {2 e^{\frac {1}{4} \coth ^{-1}(a x)} \left (\left (e^{2 \coth ^{-1}(a x)}-1\right ) \, _2F_1\left (\frac {1}{8},1;\frac {9}{8};e^{2 \coth ^{-1}(a x)}\right )+1\right )}{a \left (e^{2 \coth ^{-1}(a x)}-1\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcCoth[a*x]/4),x]

[Out]

(2*E^(ArcCoth[a*x]/4)*(1 + (-1 + E^(2*ArcCoth[a*x]))*Hypergeometric2F1[1/8, 1, 9/8, E^(2*ArcCoth[a*x])]))/(a*(
-1 + E^(2*ArcCoth[a*x])))

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 423, normalized size = 1.20 \[ \frac {4 \, \sqrt {2} a \frac {1}{a^{4}}^{\frac {1}{4}} \arctan \left (\sqrt {2} \sqrt {\sqrt {2} a^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} \frac {1}{a^{4}}^{\frac {3}{4}} + a^{2} \sqrt {\frac {1}{a^{4}}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}} a \frac {1}{a^{4}}^{\frac {1}{4}} - \sqrt {2} a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} \frac {1}{a^{4}}^{\frac {1}{4}} - 1\right ) + 4 \, \sqrt {2} a \frac {1}{a^{4}}^{\frac {1}{4}} \arctan \left (\sqrt {2} \sqrt {-\sqrt {2} a^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} \frac {1}{a^{4}}^{\frac {3}{4}} + a^{2} \sqrt {\frac {1}{a^{4}}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}} a \frac {1}{a^{4}}^{\frac {1}{4}} - \sqrt {2} a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} \frac {1}{a^{4}}^{\frac {1}{4}} + 1\right ) + \sqrt {2} a \frac {1}{a^{4}}^{\frac {1}{4}} \log \left (\sqrt {2} a^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} \frac {1}{a^{4}}^{\frac {3}{4}} + a^{2} \sqrt {\frac {1}{a^{4}}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) - \sqrt {2} a \frac {1}{a^{4}}^{\frac {1}{4}} \log \left (-\sqrt {2} a^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} \frac {1}{a^{4}}^{\frac {3}{4}} + a^{2} \sqrt {\frac {1}{a^{4}}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 8 \, {\left (a x + 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{8}} - 4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right ) + 2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + 1\right ) - 2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} - 1\right )}{8 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/8),x, algorithm="fricas")

[Out]

1/8*(4*sqrt(2)*a*(a^(-4))^(1/4)*arctan(sqrt(2)*sqrt(sqrt(2)*a^3*((a*x - 1)/(a*x + 1))^(1/8)*(a^(-4))^(3/4) + a
^2*sqrt(a^(-4)) + ((a*x - 1)/(a*x + 1))^(1/4))*a*(a^(-4))^(1/4) - sqrt(2)*a*((a*x - 1)/(a*x + 1))^(1/8)*(a^(-4
))^(1/4) - 1) + 4*sqrt(2)*a*(a^(-4))^(1/4)*arctan(sqrt(2)*sqrt(-sqrt(2)*a^3*((a*x - 1)/(a*x + 1))^(1/8)*(a^(-4
))^(3/4) + a^2*sqrt(a^(-4)) + ((a*x - 1)/(a*x + 1))^(1/4))*a*(a^(-4))^(1/4) - sqrt(2)*a*((a*x - 1)/(a*x + 1))^
(1/8)*(a^(-4))^(1/4) + 1) + sqrt(2)*a*(a^(-4))^(1/4)*log(sqrt(2)*a^3*((a*x - 1)/(a*x + 1))^(1/8)*(a^(-4))^(3/4
) + a^2*sqrt(a^(-4)) + ((a*x - 1)/(a*x + 1))^(1/4)) - sqrt(2)*a*(a^(-4))^(1/4)*log(-sqrt(2)*a^3*((a*x - 1)/(a*
x + 1))^(1/8)*(a^(-4))^(3/4) + a^2*sqrt(a^(-4)) + ((a*x - 1)/(a*x + 1))^(1/4)) + 8*(a*x + 1)*((a*x - 1)/(a*x +
 1))^(7/8) - 4*arctan(((a*x - 1)/(a*x + 1))^(1/8)) + 2*log(((a*x - 1)/(a*x + 1))^(1/8) + 1) - 2*log(((a*x - 1)
/(a*x + 1))^(1/8) - 1))/a

________________________________________________________________________________________

giac [A]  time = 0.21, size = 269, normalized size = 0.76 \[ -\frac {1}{8} \, a {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}\right )}{a^{2}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}\right )}{a^{2}} - \frac {\sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{2}} + \frac {\sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{2}} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}{a^{2}} - \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + 1\right )}{a^{2}} + \frac {2 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} - 1 \right |}\right )}{a^{2}} + \frac {16 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{8}}}{a^{2} {\left (\frac {a x - 1}{a x + 1} - 1\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/8),x, algorithm="giac")

[Out]

-1/8*a*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/8)))/a^2 + 2*sqrt(2)*arctan(-1/2*sq
rt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/8)))/a^2 - sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/8) + ((a*x
 - 1)/(a*x + 1))^(1/4) + 1)/a^2 + sqrt(2)*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/8) + ((a*x - 1)/(a*x + 1))^(1/
4) + 1)/a^2 + 4*arctan(((a*x - 1)/(a*x + 1))^(1/8))/a^2 - 2*log(((a*x - 1)/(a*x + 1))^(1/8) + 1)/a^2 + 2*log(a
bs(((a*x - 1)/(a*x + 1))^(1/8) - 1))/a^2 + 16*((a*x - 1)/(a*x + 1))^(7/8)/(a^2*((a*x - 1)/(a*x + 1) - 1)))

________________________________________________________________________________________

maple [F]  time = 0.09, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (\frac {a x -1}{a x +1}\right )^{\frac {1}{8}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/8),x)

[Out]

int(1/((a*x-1)/(a*x+1))^(1/8),x)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 265, normalized size = 0.75 \[ -\frac {1}{8} \, a {\left (\frac {16 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{8}}}{\frac {{\left (a x - 1\right )} a^{2}}{a x + 1} - a^{2}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}\right ) + 2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}\right ) - \sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) + \sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{2}} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}}\right )}{a^{2}} - \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} + 1\right )}{a^{2}} + \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{8}} - 1\right )}{a^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/8),x, algorithm="maxima")

[Out]

-1/8*a*(16*((a*x - 1)/(a*x + 1))^(7/8)/((a*x - 1)*a^2/(a*x + 1) - a^2) + (2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2
) + 2*((a*x - 1)/(a*x + 1))^(1/8))) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/8)))
 - sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/8) + ((a*x - 1)/(a*x + 1))^(1/4) + 1) + sqrt(2)*log(-sqrt(2)*(
(a*x - 1)/(a*x + 1))^(1/8) + ((a*x - 1)/(a*x + 1))^(1/4) + 1))/a^2 + 4*arctan(((a*x - 1)/(a*x + 1))^(1/8))/a^2
 - 2*log(((a*x - 1)/(a*x + 1))^(1/8) + 1)/a^2 + 2*log(((a*x - 1)/(a*x + 1))^(1/8) - 1)/a^2)

________________________________________________________________________________________

mupad [B]  time = 1.26, size = 149, normalized size = 0.42 \[ \frac {2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/8}}{a-\frac {a\,\left (a\,x-1\right )}{a\,x+1}}-\frac {\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,a}-\frac {\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\right )}{2\,a}+\frac {\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-\frac {1}{4}+\frac {1}{4}{}\mathrm {i}\right )}{a}+\frac {\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/8}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-\frac {1}{4}-\frac {1}{4}{}\mathrm {i}\right )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x - 1)/(a*x + 1))^(1/8),x)

[Out]

(2*((a*x - 1)/(a*x + 1))^(7/8))/(a - (a*(a*x - 1))/(a*x + 1)) - (atan(((a*x - 1)/(a*x + 1))^(1/8)*1i)*1i)/(2*a
) - atan(((a*x - 1)/(a*x + 1))^(1/8))/(2*a) - (2^(1/2)*atan(2^(1/2)*((a*x - 1)/(a*x + 1))^(1/8)*(1/2 - 1i/2))*
(1/4 - 1i/4))/a - (2^(1/2)*atan(2^(1/2)*((a*x - 1)/(a*x + 1))^(1/8)*(1/2 + 1i/2))*(1/4 + 1i/4))/a

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt [8]{\frac {a x - 1}{a x + 1}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/8),x)

[Out]

Integral(((a*x - 1)/(a*x + 1))**(-1/8), x)

________________________________________________________________________________________