3.115 \(\int e^{\frac {1}{3} \coth ^{-1}(x)} \, dx\)

Optimal. Leaf size=223 \[ \sqrt [6]{\frac {1}{x}+1} \left (\frac {x-1}{x}\right )^{5/6} x-\frac {1}{6} \log \left (\frac {\sqrt [3]{\frac {1}{x}+1}}{\sqrt [3]{\frac {x-1}{x}}}-\frac {\sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}+1\right )+\frac {1}{6} \log \left (\frac {\sqrt [3]{\frac {1}{x}+1}}{\sqrt [3]{\frac {x-1}{x}}}+\frac {\sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}+1\right )-\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\tan ^{-1}\left (\frac {\frac {2 \sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}+1}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {2}{3} \tanh ^{-1}\left (\frac {\sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}\right ) \]

[Out]

(1/x+1)^(1/6)*((-1+x)/x)^(5/6)*x+2/3*arctanh((1/x+1)^(1/6)/((-1+x)/x)^(1/6))-1/6*ln(1+(1/x+1)^(1/3)/((-1+x)/x)
^(1/3)-(1/x+1)^(1/6)/((-1+x)/x)^(1/6))+1/6*ln(1+(1/x+1)^(1/3)/((-1+x)/x)^(1/3)+(1/x+1)^(1/6)/((-1+x)/x)^(1/6))
-1/3*arctan(1/3*(1-2*(1/x+1)^(1/6)/((-1+x)/x)^(1/6))*3^(1/2))*3^(1/2)+1/3*arctan(1/3*(1+2*(1/x+1)^(1/6)/((-1+x
)/x)^(1/6))*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.125, Rules used = {6170, 94, 93, 210, 634, 618, 204, 628, 206} \[ \sqrt [6]{\frac {1}{x}+1} \left (\frac {x-1}{x}\right )^{5/6} x-\frac {1}{6} \log \left (\frac {\sqrt [3]{\frac {1}{x}+1}}{\sqrt [3]{\frac {x-1}{x}}}-\frac {\sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}+1\right )+\frac {1}{6} \log \left (\frac {\sqrt [3]{\frac {1}{x}+1}}{\sqrt [3]{\frac {x-1}{x}}}+\frac {\sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}+1\right )-\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\tan ^{-1}\left (\frac {\frac {2 \sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}+1}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {2}{3} \tanh ^{-1}\left (\frac {\sqrt [6]{\frac {1}{x}+1}}{\sqrt [6]{\frac {x-1}{x}}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^(ArcCoth[x]/3),x]

[Out]

(1 + x^(-1))^(1/6)*((-1 + x)/x)^(5/6)*x - ArcTan[(1 - (2*(1 + x^(-1))^(1/6))/((-1 + x)/x)^(1/6))/Sqrt[3]]/Sqrt
[3] + ArcTan[(1 + (2*(1 + x^(-1))^(1/6))/((-1 + x)/x)^(1/6))/Sqrt[3]]/Sqrt[3] + (2*ArcTanh[(1 + x^(-1))^(1/6)/
((-1 + x)/x)^(1/6)])/3 - Log[1 + (1 + x^(-1))^(1/3)/((-1 + x)/x)^(1/3) - (1 + x^(-1))^(1/6)/((-1 + x)/x)^(1/6)
]/6 + Log[1 + (1 + x^(-1))^(1/3)/((-1 + x)/x)^(1/3) + (1 + x^(-1))^(1/6)/((-1 + x)/x)^(1/6)]/6

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[-(a/b), n]], s = Denominator[Rt[-(a/b
), n]], k, u}, Simp[u = Int[(r - s*Cos[(2*k*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x] + Int[(r +
 s*Cos[(2*k*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x]; (2*r^2*Int[1/(r^2 - s^2*x^2), x])/(a*n) +
 Dist[(2*r)/(a*n), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && NegQ[a/b]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 6170

Int[E^(ArcCoth[(a_.)*(x_)]*(n_)), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /
; FreeQ[{a, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int e^{\frac {1}{3} \coth ^{-1}(x)} \, dx &=-\operatorname {Subst}\left (\int \frac {\sqrt [6]{1+x}}{\sqrt [6]{1-x} x^2} \, dx,x,\frac {1}{x}\right )\\ &=\sqrt [6]{1+\frac {1}{x}} \left (\frac {-1+x}{x}\right )^{5/6} x-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt [6]{1-x} x (1+x)^{5/6}} \, dx,x,\frac {1}{x}\right )\\ &=\sqrt [6]{1+\frac {1}{x}} \left (\frac {-1+x}{x}\right )^{5/6} x-2 \operatorname {Subst}\left (\int \frac {1}{-1+x^6} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )\\ &=\sqrt [6]{1+\frac {1}{x}} \left (\frac {-1+x}{x}\right )^{5/6} x+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1-\frac {x}{2}}{1-x+x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1+\frac {x}{2}}{1+x+x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )\\ &=\sqrt [6]{1+\frac {1}{x}} \left (\frac {-1+x}{x}\right )^{5/6} x+\frac {2}{3} \tanh ^{-1}\left (\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )-\frac {1}{6} \operatorname {Subst}\left (\int \frac {-1+2 x}{1-x+x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1+2 x}{1+x+x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1-x+x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{1+x+x^2} \, dx,x,\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )\\ &=\sqrt [6]{1+\frac {1}{x}} \left (\frac {-1+x}{x}\right )^{5/6} x+\frac {2}{3} \tanh ^{-1}\left (\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )-\frac {1}{6} \log \left (1+\frac {\sqrt [3]{1+\frac {1}{x}}}{\sqrt [3]{-\frac {1-x}{x}}}-\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )+\frac {1}{6} \log \left (1+\frac {\sqrt [3]{1+\frac {1}{x}}}{\sqrt [3]{-\frac {1-x}{x}}}+\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )-\operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+\frac {2 \sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )-\operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+\frac {2 \sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}\right )\\ &=\sqrt [6]{1+\frac {1}{x}} \left (\frac {-1+x}{x}\right )^{5/6} x+\frac {\tan ^{-1}\left (\frac {-1+\frac {2 \sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\tan ^{-1}\left (\frac {1+\frac {2 \sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{\frac {-1+x}{x}}}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {2}{3} \tanh ^{-1}\left (\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )-\frac {1}{6} \log \left (1+\frac {\sqrt [3]{1+\frac {1}{x}}}{\sqrt [3]{-\frac {1-x}{x}}}-\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )+\frac {1}{6} \log \left (1+\frac {\sqrt [3]{1+\frac {1}{x}}}{\sqrt [3]{-\frac {1-x}{x}}}+\frac {\sqrt [6]{1+\frac {1}{x}}}{\sqrt [6]{-\frac {1-x}{x}}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 35, normalized size = 0.16 \[ 2 e^{\frac {1}{3} \coth ^{-1}(x)} \left (\, _2F_1\left (\frac {1}{6},1;\frac {7}{6};e^{2 \coth ^{-1}(x)}\right )+\frac {1}{e^{2 \coth ^{-1}(x)}-1}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcCoth[x]/3),x]

[Out]

2*E^(ArcCoth[x]/3)*((-1 + E^(2*ArcCoth[x]))^(-1) + Hypergeometric2F1[1/6, 1, 7/6, E^(2*ArcCoth[x])])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 160, normalized size = 0.72 \[ {\left (x + 1\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}} - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {2}{3} \, \sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + \frac {1}{3} \, \sqrt {3}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {2}{3} \, \sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} - \frac {1}{3} \, \sqrt {3}\right ) + \frac {1}{6} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) - \frac {1}{6} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} - \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) + \frac {1}{3} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) - \frac {1}{3} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/6),x, algorithm="fricas")

[Out]

(x + 1)*((x - 1)/(x + 1))^(5/6) - 1/3*sqrt(3)*arctan(2/3*sqrt(3)*((x - 1)/(x + 1))^(1/6) + 1/3*sqrt(3)) - 1/3*
sqrt(3)*arctan(2/3*sqrt(3)*((x - 1)/(x + 1))^(1/6) - 1/3*sqrt(3)) + 1/6*log(((x - 1)/(x + 1))^(1/3) + ((x - 1)
/(x + 1))^(1/6) + 1) - 1/6*log(((x - 1)/(x + 1))^(1/3) - ((x - 1)/(x + 1))^(1/6) + 1) + 1/3*log(((x - 1)/(x +
1))^(1/6) + 1) - 1/3*log(((x - 1)/(x + 1))^(1/6) - 1)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 168, normalized size = 0.75 \[ -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right )}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} - 1\right )}\right ) - \frac {2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{\frac {x - 1}{x + 1} - 1} + \frac {1}{6} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) - \frac {1}{6} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} - \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) + \frac {1}{3} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) - \frac {1}{3} \, \log \left ({\left | \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/6),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))^(1/6) + 1)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/
(x + 1))^(1/6) - 1)) - 2*((x - 1)/(x + 1))^(5/6)/((x - 1)/(x + 1) - 1) + 1/6*log(((x - 1)/(x + 1))^(1/3) + ((x
 - 1)/(x + 1))^(1/6) + 1) - 1/6*log(((x - 1)/(x + 1))^(1/3) - ((x - 1)/(x + 1))^(1/6) + 1) + 1/3*log(((x - 1)/
(x + 1))^(1/6) + 1) - 1/3*log(abs(((x - 1)/(x + 1))^(1/6) - 1))

________________________________________________________________________________________

maple [C]  time = 4.10, size = 1700, normalized size = 7.62 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((-1+x)/(1+x))^(1/6),x)

[Out]

(-1+x)/((-1+x)/(1+x))^(1/6)+(1/3*ln((-2-8*x-12*x^2-6*RootOf(_Z^2+_Z+1)*x^2-RootOf(_Z^2+_Z+1)*x^4-4*RootOf(_Z^2
+_Z+1)*x^3-4*RootOf(_Z^2+_Z+1)*x-2*x^4-8*x^3-RootOf(_Z^2+_Z+1)-3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)+3*(x^6+4*
x^5+5*x^4-5*x^2-4*x-1)^(5/6)+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(2/3)-3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)-3*(x^
6+4*x^5+5*x^4-5*x^2-4*x-1)^(2/3)*RootOf(_Z^2+_Z+1)*x-6*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x
^3-18*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x^2-18*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*
x-1)^(1/3)*x-6*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/2)*x^2-3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)
*RootOf(_Z^2+_Z+1)*x^4-12*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/2)*x-12*(x^6+4*x^5+5*x^4-5*x^2-4*
x-1)^(1/6)*RootOf(_Z^2+_Z+1)*x^3-18*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*RootOf(_Z^2+_Z+1)*x^2-12*(x^6+4*x^5+5*
x^4-5*x^2-4*x-1)^(1/6)*RootOf(_Z^2+_Z+1)*x-6*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/2)-3*(x^6+4*x^
5+5*x^4-5*x^2-4*x-1)^(1/6)*RootOf(_Z^2+_Z+1)-3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(2/3)*RootOf(_Z^2+_Z+1)-6*RootOf(
_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(2/3)*x-3*(x^6+4*x^5+5*x^4-5*x^
2-4*x-1)^(1/3)*x^3-9*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x^2-9*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x-12*(x^6+4
*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x-3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x^4-12*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/
6)*x^3-18*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x^2)/(1+x)^4)+1/3*RootOf(_Z^2+_Z+1)*ln((-1-4*x-6*x^2-12*RootOf(_
Z^2+_Z+1)*x^2-2*RootOf(_Z^2+_Z+1)*x^4-8*RootOf(_Z^2+_Z+1)*x^3-8*RootOf(_Z^2+_Z+1)*x-x^4-4*x^3-2*RootOf(_Z^2+_Z
+1)+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(5/6)-3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1
)^(2/3)-6*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/2)+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)-6*(x^6+4*x^5+5*x^4-5*x^2-4
*x-1)^(2/3)*RootOf(_Z^2+_Z+1)*x+6*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x^3+18*RootOf(_Z^2+_Z+
1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x^2+18*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x-6*(x^6+4
*x^5+5*x^4-5*x^2-4*x-1)^(2/3)*RootOf(_Z^2+_Z+1)+6*RootOf(_Z^2+_Z+1)*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)-3*(x^6
+4*x^5+5*x^4-5*x^2-4*x-1)^(2/3)*x-6*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/2)*x^2+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1
/3)*x^3-12*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/2)*x+9*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/3)*x^2+9*(x^6+4*x^5+5*x^4-
5*x^2-4*x-1)^(1/3)*x+12*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x+3*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x^4+12*(x^
6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x^3+18*(x^6+4*x^5+5*x^4-5*x^2-4*x-1)^(1/6)*x^2)/(1+x)^4))/((-1+x)/(1+x))^(1/6
)*((-1+x)*(1+x)^5)^(1/6)/(1+x)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 167, normalized size = 0.75 \[ -\frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right )}\right ) - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} - 1\right )}\right ) - \frac {2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {5}{6}}}{\frac {x - 1}{x + 1} - 1} + \frac {1}{6} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) - \frac {1}{6} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} - \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) + \frac {1}{3} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} + 1\right ) - \frac {1}{3} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{6}} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/6),x, algorithm="maxima")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))^(1/6) + 1)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/
(x + 1))^(1/6) - 1)) - 2*((x - 1)/(x + 1))^(5/6)/((x - 1)/(x + 1) - 1) + 1/6*log(((x - 1)/(x + 1))^(1/3) + ((x
 - 1)/(x + 1))^(1/6) + 1) - 1/6*log(((x - 1)/(x + 1))^(1/3) - ((x - 1)/(x + 1))^(1/6) + 1) + 1/3*log(((x - 1)/
(x + 1))^(1/6) + 1) - 1/3*log(((x - 1)/(x + 1))^(1/6) - 1)

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 115, normalized size = 0.52 \[ -\frac {\mathrm {atan}\left ({\left (\frac {x-1}{x+1}\right )}^{1/6}\,1{}\mathrm {i}\right )\,2{}\mathrm {i}}{3}-\frac {2\,{\left (\frac {x-1}{x+1}\right )}^{5/6}}{\frac {x-1}{x+1}-1}-\mathrm {atan}\left (\frac {{\left (\frac {x-1}{x+1}\right )}^{1/6}\,64{}\mathrm {i}}{-32+\sqrt {3}\,32{}\mathrm {i}}\right )\,\left (\frac {\sqrt {3}}{3}-\frac {1}{3}{}\mathrm {i}\right )-\mathrm {atan}\left (\frac {{\left (\frac {x-1}{x+1}\right )}^{1/6}\,64{}\mathrm {i}}{32+\sqrt {3}\,32{}\mathrm {i}}\right )\,\left (\frac {\sqrt {3}}{3}+\frac {1}{3}{}\mathrm {i}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((x - 1)/(x + 1))^(1/6),x)

[Out]

- (atan(((x - 1)/(x + 1))^(1/6)*1i)*2i)/3 - (2*((x - 1)/(x + 1))^(5/6))/((x - 1)/(x + 1) - 1) - atan((((x - 1)
/(x + 1))^(1/6)*64i)/(3^(1/2)*32i - 32))*(3^(1/2)/3 - 1i/3) - atan((((x - 1)/(x + 1))^(1/6)*64i)/(3^(1/2)*32i
+ 32))*(3^(1/2)/3 + 1i/3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt [6]{\frac {x - 1}{x + 1}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))**(1/6),x)

[Out]

Integral(((x - 1)/(x + 1))**(-1/6), x)

________________________________________________________________________________________