3.105 \(\int e^{-\frac {5}{2} \coth ^{-1}(a x)} x^3 \, dx\)

Optimal. Leaf size=250 \[ -\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{\frac {1}{a x}+1}}-\frac {475 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {475 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}-\frac {521 x \sqrt [4]{1-\frac {1}{a x}}}{192 a^3 \sqrt [4]{\frac {1}{a x}+1}}+\frac {113 x^2 \sqrt [4]{1-\frac {1}{a x}}}{96 a^2 \sqrt [4]{\frac {1}{a x}+1}}+\frac {x^4 \sqrt [4]{1-\frac {1}{a x}}}{4 \sqrt [4]{\frac {1}{a x}+1}}-\frac {17 x^3 \sqrt [4]{1-\frac {1}{a x}}}{24 a \sqrt [4]{\frac {1}{a x}+1}} \]

[Out]

-2467/192*(1-1/a/x)^(1/4)/a^4/(1+1/a/x)^(1/4)-521/192*(1-1/a/x)^(1/4)*x/a^3/(1+1/a/x)^(1/4)+113/96*(1-1/a/x)^(
1/4)*x^2/a^2/(1+1/a/x)^(1/4)-17/24*(1-1/a/x)^(1/4)*x^3/a/(1+1/a/x)^(1/4)+1/4*(1-1/a/x)^(1/4)*x^4/(1+1/a/x)^(1/
4)-475/64*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^4+475/64*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^4

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 250, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.643, Rules used = {6171, 98, 151, 155, 12, 93, 298, 203, 206} \[ \frac {113 x^2 \sqrt [4]{1-\frac {1}{a x}}}{96 a^2 \sqrt [4]{\frac {1}{a x}+1}}-\frac {521 x \sqrt [4]{1-\frac {1}{a x}}}{192 a^3 \sqrt [4]{\frac {1}{a x}+1}}-\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{\frac {1}{a x}+1}}-\frac {475 \tan ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {475 \tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {x^4 \sqrt [4]{1-\frac {1}{a x}}}{4 \sqrt [4]{\frac {1}{a x}+1}}-\frac {17 x^3 \sqrt [4]{1-\frac {1}{a x}}}{24 a \sqrt [4]{\frac {1}{a x}+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/E^((5*ArcCoth[a*x])/2),x]

[Out]

(-2467*(1 - 1/(a*x))^(1/4))/(192*a^4*(1 + 1/(a*x))^(1/4)) - (521*(1 - 1/(a*x))^(1/4)*x)/(192*a^3*(1 + 1/(a*x))
^(1/4)) + (113*(1 - 1/(a*x))^(1/4)*x^2)/(96*a^2*(1 + 1/(a*x))^(1/4)) - (17*(1 - 1/(a*x))^(1/4)*x^3)/(24*a*(1 +
 1/(a*x))^(1/4)) + ((1 - 1/(a*x))^(1/4)*x^4)/(4*(1 + 1/(a*x))^(1/4)) - (475*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/
(a*x))^(1/4)])/(64*a^4) + (475*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(64*a^4)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m + n + p + 2, 0] && NeQ[m, -1] && (Sum
SimplerQ[m, 1] || ( !(NeQ[n, -1] && SumSimplerQ[n, 1]) &&  !(NeQ[p, -1] && SumSimplerQ[p, 1])))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int e^{-\frac {5}{2} \coth ^{-1}(a x)} x^3 \, dx &=-\operatorname {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^{5/4}}{x^5 \left (1+\frac {x}{a}\right )^{5/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}+\frac {1}{4} \operatorname {Subst}\left (\int \frac {\frac {17}{2 a}-\frac {8 x}{a^2}}{x^4 \left (1-\frac {x}{a}\right )^{3/4} \left (1+\frac {x}{a}\right )^{5/4}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {1}{12} \operatorname {Subst}\left (\int \frac {\frac {113}{4 a^2}-\frac {51 x}{2 a^3}}{x^3 \left (1-\frac {x}{a}\right )^{3/4} \left (1+\frac {x}{a}\right )^{5/4}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}+\frac {1}{24} \operatorname {Subst}\left (\int \frac {\frac {521}{8 a^3}-\frac {113 x}{2 a^4}}{x^2 \left (1-\frac {x}{a}\right )^{3/4} \left (1+\frac {x}{a}\right )^{5/4}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {521 \sqrt [4]{1-\frac {1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac {1}{a x}}}+\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {1}{24} \operatorname {Subst}\left (\int \frac {\frac {1425}{16 a^4}-\frac {521 x}{8 a^5}}{x \left (1-\frac {x}{a}\right )^{3/4} \left (1+\frac {x}{a}\right )^{5/4}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {521 \sqrt [4]{1-\frac {1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac {1}{a x}}}+\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {1}{12} a \operatorname {Subst}\left (\int \frac {1425}{32 a^5 x \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {521 \sqrt [4]{1-\frac {1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac {1}{a x}}}+\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {475 \operatorname {Subst}\left (\int \frac {1}{x \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{128 a^4}\\ &=-\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {521 \sqrt [4]{1-\frac {1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac {1}{a x}}}+\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {475 \operatorname {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{32 a^4}\\ &=-\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {521 \sqrt [4]{1-\frac {1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac {1}{a x}}}+\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}+\frac {475 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}-\frac {475 \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}\\ &=-\frac {2467 \sqrt [4]{1-\frac {1}{a x}}}{192 a^4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {521 \sqrt [4]{1-\frac {1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac {1}{a x}}}+\frac {113 \sqrt [4]{1-\frac {1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac {1}{a x}}}-\frac {17 \sqrt [4]{1-\frac {1}{a x}} x^3}{24 a \sqrt [4]{1+\frac {1}{a x}}}+\frac {\sqrt [4]{1-\frac {1}{a x}} x^4}{4 \sqrt [4]{1+\frac {1}{a x}}}-\frac {475 \tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {475 \tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.32, size = 161, normalized size = 0.64 \[ \frac {-3072 e^{-\frac {1}{2} \coth ^{-1}(a x)}-\frac {6292 e^{\frac {3}{2} \coth ^{-1}(a x)}}{e^{2 \coth ^{-1}(a x)}-1}+\frac {7376 e^{\frac {7}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^2}-\frac {5248 e^{\frac {11}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^3}+\frac {1536 e^{\frac {15}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^4}-1425 \log \left (1-e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )+1425 \log \left (e^{-\frac {1}{2} \coth ^{-1}(a x)}+1\right )+2850 \tan ^{-1}\left (e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )}{384 a^4} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/E^((5*ArcCoth[a*x])/2),x]

[Out]

(-3072/E^(ArcCoth[a*x]/2) + (1536*E^((15*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^4 - (5248*E^((11*ArcCoth[
a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^3 + (7376*E^((7*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^2 - (6292*E^((
3*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x])) + 2850*ArcTan[E^(-1/2*ArcCoth[a*x])] - 1425*Log[1 - E^(-1/2*ArcC
oth[a*x])] + 1425*Log[1 + E^(-1/2*ArcCoth[a*x])])/(384*a^4)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 111, normalized size = 0.44 \[ \frac {2 \, {\left (48 \, a^{4} x^{4} - 136 \, a^{3} x^{3} + 226 \, a^{2} x^{2} - 521 \, a x - 2467\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 2850 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 1425 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - 1425 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{384 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*((a*x-1)/(a*x+1))^(5/4),x, algorithm="fricas")

[Out]

1/384*(2*(48*a^4*x^4 - 136*a^3*x^3 + 226*a^2*x^2 - 521*a*x - 2467)*((a*x - 1)/(a*x + 1))^(1/4) + 2850*arctan((
(a*x - 1)/(a*x + 1))^(1/4)) + 1425*log(((a*x - 1)/(a*x + 1))^(1/4) + 1) - 1425*log(((a*x - 1)/(a*x + 1))^(1/4)
 - 1))/a^4

________________________________________________________________________________________

giac [A]  time = 0.23, size = 223, normalized size = 0.89 \[ \frac {1}{384} \, a {\left (\frac {2850 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{5}} + \frac {1425 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{5}} - \frac {1425 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{5}} - \frac {3072 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a^{5}} + \frac {4 \, {\left (\frac {2343 \, {\left (a x - 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a x + 1} - \frac {2875 \, {\left (a x - 1\right )}^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{{\left (a x + 1\right )}^{2}} + \frac {1573 \, {\left (a x - 1\right )}^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{{\left (a x + 1\right )}^{3}} - 657 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{a^{5} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{4}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*((a*x-1)/(a*x+1))^(5/4),x, algorithm="giac")

[Out]

1/384*a*(2850*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 + 1425*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 - 1425*l
og(abs(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^5 - 3072*((a*x - 1)/(a*x + 1))^(1/4)/a^5 + 4*(2343*(a*x - 1)*((a*x
- 1)/(a*x + 1))^(1/4)/(a*x + 1) - 2875*(a*x - 1)^2*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^2 + 1573*(a*x - 1)^3*
((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^3 - 657*((a*x - 1)/(a*x + 1))^(1/4))/(a^5*((a*x - 1)/(a*x + 1) - 1)^4))

________________________________________________________________________________________

maple [F]  time = 0.36, size = 0, normalized size = 0.00 \[ \int x^{3} \left (\frac {a x -1}{a x +1}\right )^{\frac {5}{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*((a*x-1)/(a*x+1))^(5/4),x)

[Out]

int(x^3*((a*x-1)/(a*x+1))^(5/4),x)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 244, normalized size = 0.98 \[ -\frac {1}{384} \, a {\left (\frac {4 \, {\left (1573 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {13}{4}} - 2875 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {9}{4}} + 2343 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{4}} - 657 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{\frac {4 \, {\left (a x - 1\right )} a^{5}}{a x + 1} - \frac {6 \, {\left (a x - 1\right )}^{2} a^{5}}{{\left (a x + 1\right )}^{2}} + \frac {4 \, {\left (a x - 1\right )}^{3} a^{5}}{{\left (a x + 1\right )}^{3}} - \frac {{\left (a x - 1\right )}^{4} a^{5}}{{\left (a x + 1\right )}^{4}} - a^{5}} - \frac {2850 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{5}} - \frac {1425 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{5}} + \frac {1425 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{5}} + \frac {3072 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a^{5}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*((a*x-1)/(a*x+1))^(5/4),x, algorithm="maxima")

[Out]

-1/384*a*(4*(1573*((a*x - 1)/(a*x + 1))^(13/4) - 2875*((a*x - 1)/(a*x + 1))^(9/4) + 2343*((a*x - 1)/(a*x + 1))
^(5/4) - 657*((a*x - 1)/(a*x + 1))^(1/4))/(4*(a*x - 1)*a^5/(a*x + 1) - 6*(a*x - 1)^2*a^5/(a*x + 1)^2 + 4*(a*x
- 1)^3*a^5/(a*x + 1)^3 - (a*x - 1)^4*a^5/(a*x + 1)^4 - a^5) - 2850*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 - 1
425*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 + 1425*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^5 + 3072*((a*x - 1)
/(a*x + 1))^(1/4)/a^5)

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 217, normalized size = 0.87 \[ \frac {475\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{64\,a^4}-\frac {\frac {219\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}{32}-\frac {781\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/4}}{32}+\frac {2875\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{9/4}}{96}-\frac {1573\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{13/4}}{96}}{a^4+\frac {6\,a^4\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {4\,a^4\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {a^4\,{\left (a\,x-1\right )}^4}{{\left (a\,x+1\right )}^4}-\frac {4\,a^4\,\left (a\,x-1\right )}{a\,x+1}}-\frac {8\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}{a^4}-\frac {\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,1{}\mathrm {i}\right )\,475{}\mathrm {i}}{64\,a^4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*((a*x - 1)/(a*x + 1))^(5/4),x)

[Out]

(475*atan(((a*x - 1)/(a*x + 1))^(1/4)))/(64*a^4) - (8*((a*x - 1)/(a*x + 1))^(1/4))/a^4 - ((219*((a*x - 1)/(a*x
 + 1))^(1/4))/32 - (781*((a*x - 1)/(a*x + 1))^(5/4))/32 + (2875*((a*x - 1)/(a*x + 1))^(9/4))/96 - (1573*((a*x
- 1)/(a*x + 1))^(13/4))/96)/(a^4 + (6*a^4*(a*x - 1)^2)/(a*x + 1)^2 - (4*a^4*(a*x - 1)^3)/(a*x + 1)^3 + (a^4*(a
*x - 1)^4)/(a*x + 1)^4 - (4*a^4*(a*x - 1))/(a*x + 1)) - (atan(((a*x - 1)/(a*x + 1))^(1/4)*1i)*475i)/(64*a^4)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*((a*x-1)/(a*x+1))**(5/4),x)

[Out]

Timed out

________________________________________________________________________________________