3.48 \(\int \sqrt {a-a x^2} \coth ^{-1}(x) \, dx\)

Optimal. Leaf size=186 \[ -\frac {i a \sqrt {1-x^2} \text {Li}_2\left (-\frac {i \sqrt {1-x}}{\sqrt {x+1}}\right )}{2 \sqrt {a-a x^2}}+\frac {i a \sqrt {1-x^2} \text {Li}_2\left (\frac {i \sqrt {1-x}}{\sqrt {x+1}}\right )}{2 \sqrt {a-a x^2}}+\frac {1}{2} \sqrt {a-a x^2}+\frac {1}{2} x \sqrt {a-a x^2} \coth ^{-1}(x)-\frac {a \sqrt {1-x^2} \tan ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {x+1}}\right ) \coth ^{-1}(x)}{\sqrt {a-a x^2}} \]

[Out]

-a*arccoth(x)*arctan((1-x)^(1/2)/(1+x)^(1/2))*(-x^2+1)^(1/2)/(-a*x^2+a)^(1/2)-1/2*I*a*polylog(2,-I*(1-x)^(1/2)
/(1+x)^(1/2))*(-x^2+1)^(1/2)/(-a*x^2+a)^(1/2)+1/2*I*a*polylog(2,I*(1-x)^(1/2)/(1+x)^(1/2))*(-x^2+1)^(1/2)/(-a*
x^2+a)^(1/2)+1/2*(-a*x^2+a)^(1/2)+1/2*x*arccoth(x)*(-a*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 186, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {5943, 5955, 5951} \[ -\frac {i a \sqrt {1-x^2} \text {PolyLog}\left (2,-\frac {i \sqrt {1-x}}{\sqrt {x+1}}\right )}{2 \sqrt {a-a x^2}}+\frac {i a \sqrt {1-x^2} \text {PolyLog}\left (2,\frac {i \sqrt {1-x}}{\sqrt {x+1}}\right )}{2 \sqrt {a-a x^2}}+\frac {1}{2} \sqrt {a-a x^2}+\frac {1}{2} x \sqrt {a-a x^2} \coth ^{-1}(x)-\frac {a \sqrt {1-x^2} \tan ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {x+1}}\right ) \coth ^{-1}(x)}{\sqrt {a-a x^2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - a*x^2]*ArcCoth[x],x]

[Out]

Sqrt[a - a*x^2]/2 + (x*Sqrt[a - a*x^2]*ArcCoth[x])/2 - (a*Sqrt[1 - x^2]*ArcCoth[x]*ArcTan[Sqrt[1 - x]/Sqrt[1 +
 x]])/Sqrt[a - a*x^2] - ((I/2)*a*Sqrt[1 - x^2]*PolyLog[2, ((-I)*Sqrt[1 - x])/Sqrt[1 + x]])/Sqrt[a - a*x^2] + (
(I/2)*a*Sqrt[1 - x^2]*PolyLog[2, (I*Sqrt[1 - x])/Sqrt[1 + x]])/Sqrt[a - a*x^2]

Rule 5943

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(b*(d + e*x^2)^q)/(2*c*
q*(2*q + 1)), x] + (Dist[(2*d*q)/(2*q + 1), Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x]), x], x] + Simp[(x*(d
+ e*x^2)^q*(a + b*ArcCoth[c*x]))/(2*q + 1), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0]

Rule 5951

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*(a + b*ArcCoth[c*x])*
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])/(c*Sqrt[d]), x] + (-Simp[(I*b*PolyLog[2, -((I*Sqrt[1 - c*x])/Sqrt[1 + c*x
])])/(c*Sqrt[d]), x] + Simp[(I*b*PolyLog[2, (I*Sqrt[1 - c*x])/Sqrt[1 + c*x]])/(c*Sqrt[d]), x]) /; FreeQ[{a, b,
 c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]

Rule 5955

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 - c^2*x^2]/S
qrt[d + e*x^2], Int[(a + b*ArcCoth[c*x])^p/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d
 + e, 0] && IGtQ[p, 0] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \sqrt {a-a x^2} \coth ^{-1}(x) \, dx &=\frac {1}{2} \sqrt {a-a x^2}+\frac {1}{2} x \sqrt {a-a x^2} \coth ^{-1}(x)+\frac {1}{2} a \int \frac {\coth ^{-1}(x)}{\sqrt {a-a x^2}} \, dx\\ &=\frac {1}{2} \sqrt {a-a x^2}+\frac {1}{2} x \sqrt {a-a x^2} \coth ^{-1}(x)+\frac {\left (a \sqrt {1-x^2}\right ) \int \frac {\coth ^{-1}(x)}{\sqrt {1-x^2}} \, dx}{2 \sqrt {a-a x^2}}\\ &=\frac {1}{2} \sqrt {a-a x^2}+\frac {1}{2} x \sqrt {a-a x^2} \coth ^{-1}(x)-\frac {a \sqrt {1-x^2} \coth ^{-1}(x) \tan ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {1+x}}\right )}{\sqrt {a-a x^2}}-\frac {i a \sqrt {1-x^2} \text {Li}_2\left (-\frac {i \sqrt {1-x}}{\sqrt {1+x}}\right )}{2 \sqrt {a-a x^2}}+\frac {i a \sqrt {1-x^2} \text {Li}_2\left (\frac {i \sqrt {1-x}}{\sqrt {1+x}}\right )}{2 \sqrt {a-a x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.97, size = 125, normalized size = 0.67 \[ -\frac {\sqrt {a-a x^2} \left (-4 \text {Li}_2\left (-e^{-\coth ^{-1}(x)}\right )+4 \text {Li}_2\left (e^{-\coth ^{-1}(x)}\right )-2 \coth \left (\frac {1}{2} \coth ^{-1}(x)\right )-4 \coth ^{-1}(x) \log \left (1-e^{-\coth ^{-1}(x)}\right )+4 \coth ^{-1}(x) \log \left (e^{-\coth ^{-1}(x)}+1\right )+2 \tanh \left (\frac {1}{2} \coth ^{-1}(x)\right )-\coth ^{-1}(x) \text {csch}^2\left (\frac {1}{2} \coth ^{-1}(x)\right )-\coth ^{-1}(x) \text {sech}^2\left (\frac {1}{2} \coth ^{-1}(x)\right )\right )}{8 \sqrt {1-\frac {1}{x^2}} x} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a - a*x^2]*ArcCoth[x],x]

[Out]

-1/8*(Sqrt[a - a*x^2]*(-2*Coth[ArcCoth[x]/2] - ArcCoth[x]*Csch[ArcCoth[x]/2]^2 - 4*ArcCoth[x]*Log[1 - E^(-ArcC
oth[x])] + 4*ArcCoth[x]*Log[1 + E^(-ArcCoth[x])] - 4*PolyLog[2, -E^(-ArcCoth[x])] + 4*PolyLog[2, E^(-ArcCoth[x
])] - ArcCoth[x]*Sech[ArcCoth[x]/2]^2 + 2*Tanh[ArcCoth[x]/2]))/(Sqrt[1 - x^(-2)]*x)

________________________________________________________________________________________

fricas [F]  time = 0.81, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {-a x^{2} + a} \operatorname {arcoth}\relax (x), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x^2+a)^(1/2)*arccoth(x),x, algorithm="fricas")

[Out]

integral(sqrt(-a*x^2 + a)*arccoth(x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-a x^{2} + a} \operatorname {arcoth}\relax (x)\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x^2+a)^(1/2)*arccoth(x),x, algorithm="giac")

[Out]

integrate(sqrt(-a*x^2 + a)*arccoth(x), x)

________________________________________________________________________________________

maple [A]  time = 0.66, size = 199, normalized size = 1.07 \[ \frac {\left (\mathrm {arccoth}\relax (x ) x +1\right ) \sqrt {-\left (-1+x \right ) \left (1+x \right ) a}}{2}+\frac {\sqrt {-\left (-1+x \right ) \left (1+x \right ) a}\, \sqrt {\frac {-1+x}{1+x}}\, \mathrm {arccoth}\relax (x ) \ln \left (1-\frac {1}{\sqrt {\frac {-1+x}{1+x}}}\right )}{-2+2 x}+\frac {\sqrt {-\left (-1+x \right ) \left (1+x \right ) a}\, \sqrt {\frac {-1+x}{1+x}}\, \polylog \left (2, \frac {1}{\sqrt {\frac {-1+x}{1+x}}}\right )}{-2+2 x}-\frac {\sqrt {-\left (-1+x \right ) \left (1+x \right ) a}\, \sqrt {\frac {-1+x}{1+x}}\, \mathrm {arccoth}\relax (x ) \ln \left (1+\frac {1}{\sqrt {\frac {-1+x}{1+x}}}\right )}{2 \left (-1+x \right )}-\frac {\sqrt {-\left (-1+x \right ) \left (1+x \right ) a}\, \sqrt {\frac {-1+x}{1+x}}\, \polylog \left (2, -\frac {1}{\sqrt {\frac {-1+x}{1+x}}}\right )}{2 \left (-1+x \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*x^2+a)^(1/2)*arccoth(x),x)

[Out]

1/2*(arccoth(x)*x+1)*(-(-1+x)*(1+x)*a)^(1/2)+1/2*(-(-1+x)*(1+x)*a)^(1/2)*((-1+x)/(1+x))^(1/2)/(-1+x)*arccoth(x
)*ln(1-1/((-1+x)/(1+x))^(1/2))+1/2*(-(-1+x)*(1+x)*a)^(1/2)*((-1+x)/(1+x))^(1/2)/(-1+x)*polylog(2,1/((-1+x)/(1+
x))^(1/2))-1/2*(-(-1+x)*(1+x)*a)^(1/2)*((-1+x)/(1+x))^(1/2)/(-1+x)*arccoth(x)*ln(1+1/((-1+x)/(1+x))^(1/2))-1/2
*(-(-1+x)*(1+x)*a)^(1/2)*((-1+x)/(1+x))^(1/2)/(-1+x)*polylog(2,-1/((-1+x)/(1+x))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-a x^{2} + a} \operatorname {arcoth}\relax (x)\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x^2+a)^(1/2)*arccoth(x),x, algorithm="maxima")

[Out]

integrate(sqrt(-a*x^2 + a)*arccoth(x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \mathrm {acoth}\relax (x)\,\sqrt {a-a\,x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(x)*(a - a*x^2)^(1/2),x)

[Out]

int(acoth(x)*(a - a*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {- a \left (x - 1\right ) \left (x + 1\right )} \operatorname {acoth}{\relax (x )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x**2+a)**(1/2)*acoth(x),x)

[Out]

Integral(sqrt(-a*(x - 1)*(x + 1))*acoth(x), x)

________________________________________________________________________________________