3.289 \(\int \coth ^{-1}(a+b f^{c+d x}) \, dx\)

Optimal. Leaf size=168 \[ \frac {\text {Li}_2\left (1-\frac {2}{b f^{c+d x}+a+1}\right )}{2 d \log (f)}-\frac {\text {Li}_2\left (1-\frac {2 b f^{c+d x}}{(1-a) \left (b f^{c+d x}+a+1\right )}\right )}{2 d \log (f)}-\frac {\log \left (\frac {2}{a+b f^{c+d x}+1}\right ) \coth ^{-1}\left (a+b f^{c+d x}\right )}{d \log (f)}+\frac {\log \left (\frac {2 b f^{c+d x}}{(1-a) \left (a+b f^{c+d x}+1\right )}\right ) \coth ^{-1}\left (a+b f^{c+d x}\right )}{d \log (f)} \]

[Out]

-arccoth(a+b*f^(d*x+c))*ln(2/(1+a+b*f^(d*x+c)))/d/ln(f)+arccoth(a+b*f^(d*x+c))*ln(2*b*f^(d*x+c)/(1-a)/(1+a+b*f
^(d*x+c)))/d/ln(f)+1/2*polylog(2,1-2/(1+a+b*f^(d*x+c)))/d/ln(f)-1/2*polylog(2,1-2*b*f^(d*x+c)/(1-a)/(1+a+b*f^(
d*x+c)))/d/ln(f)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2282, 6112, 5921, 2402, 2315, 2447} \[ \frac {\text {PolyLog}\left (2,1-\frac {2}{a+b f^{c+d x}+1}\right )}{2 d \log (f)}-\frac {\text {PolyLog}\left (2,1-\frac {2 b f^{c+d x}}{(1-a) \left (a+b f^{c+d x}+1\right )}\right )}{2 d \log (f)}-\frac {\log \left (\frac {2}{a+b f^{c+d x}+1}\right ) \coth ^{-1}\left (a+b f^{c+d x}\right )}{d \log (f)}+\frac {\log \left (\frac {2 b f^{c+d x}}{(1-a) \left (a+b f^{c+d x}+1\right )}\right ) \coth ^{-1}\left (a+b f^{c+d x}\right )}{d \log (f)} \]

Antiderivative was successfully verified.

[In]

Int[ArcCoth[a + b*f^(c + d*x)],x]

[Out]

-((ArcCoth[a + b*f^(c + d*x)]*Log[2/(1 + a + b*f^(c + d*x))])/(d*Log[f])) + (ArcCoth[a + b*f^(c + d*x)]*Log[(2
*b*f^(c + d*x))/((1 - a)*(1 + a + b*f^(c + d*x)))])/(d*Log[f]) + PolyLog[2, 1 - 2/(1 + a + b*f^(c + d*x))]/(2*
d*Log[f]) - PolyLog[2, 1 - (2*b*f^(c + d*x))/((1 - a)*(1 + a + b*f^(c + d*x)))]/(2*d*Log[f])

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 2402

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> -Dist[e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 2447

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[(Pq^m*(1 - u))/D[u, x]]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 5921

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[((a + b*ArcCoth[c*x])*Log[2/(1
 + c*x)])/e, x] + (Dist[(b*c)/e, Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x], x] - Dist[(b*c)/e, Int[Log[(2*c*(d +
e*x))/((c*d + e)*(1 + c*x))]/(1 - c^2*x^2), x], x] + Simp[((a + b*ArcCoth[c*x])*Log[(2*c*(d + e*x))/((c*d + e)
*(1 + c*x))])/e, x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0]

Rule 6112

Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcCoth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &
& IGtQ[p, 0]

Rubi steps

\begin {align*} \int \coth ^{-1}\left (a+b f^{c+d x}\right ) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\coth ^{-1}(a+b x)}{x} \, dx,x,f^{c+d x}\right )}{d \log (f)}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\coth ^{-1}(x)}{-\frac {a}{b}+\frac {x}{b}} \, dx,x,a+b f^{c+d x}\right )}{b d \log (f)}\\ &=-\frac {\coth ^{-1}\left (a+b f^{c+d x}\right ) \log \left (\frac {2}{1+a+b f^{c+d x}}\right )}{d \log (f)}+\frac {\coth ^{-1}\left (a+b f^{c+d x}\right ) \log \left (\frac {2 b f^{c+d x}}{(1-a) \left (1+a+b f^{c+d x}\right )}\right )}{d \log (f)}+\frac {\operatorname {Subst}\left (\int \frac {\log \left (\frac {2}{1+x}\right )}{1-x^2} \, dx,x,a+b f^{c+d x}\right )}{d \log (f)}-\frac {\operatorname {Subst}\left (\int \frac {\log \left (\frac {2 \left (-\frac {a}{b}+\frac {x}{b}\right )}{\left (\frac {1}{b}-\frac {a}{b}\right ) (1+x)}\right )}{1-x^2} \, dx,x,a+b f^{c+d x}\right )}{d \log (f)}\\ &=-\frac {\coth ^{-1}\left (a+b f^{c+d x}\right ) \log \left (\frac {2}{1+a+b f^{c+d x}}\right )}{d \log (f)}+\frac {\coth ^{-1}\left (a+b f^{c+d x}\right ) \log \left (\frac {2 b f^{c+d x}}{(1-a) \left (1+a+b f^{c+d x}\right )}\right )}{d \log (f)}-\frac {\text {Li}_2\left (1-\frac {2 b f^{c+d x}}{(1-a) \left (1+a+b f^{c+d x}\right )}\right )}{2 d \log (f)}+\frac {\operatorname {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1+a+b f^{c+d x}}\right )}{d \log (f)}\\ &=-\frac {\coth ^{-1}\left (a+b f^{c+d x}\right ) \log \left (\frac {2}{1+a+b f^{c+d x}}\right )}{d \log (f)}+\frac {\coth ^{-1}\left (a+b f^{c+d x}\right ) \log \left (\frac {2 b f^{c+d x}}{(1-a) \left (1+a+b f^{c+d x}\right )}\right )}{d \log (f)}+\frac {\text {Li}_2\left (1-\frac {2}{1+a+b f^{c+d x}}\right )}{2 d \log (f)}-\frac {\text {Li}_2\left (1-\frac {2 b f^{c+d x}}{(1-a) \left (1+a+b f^{c+d x}\right )}\right )}{2 d \log (f)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 108, normalized size = 0.64 \[ \frac {\text {Li}_2\left (-\frac {b f^{c+d x}}{a-1}\right )-\text {Li}_2\left (-\frac {b f^{c+d x}}{a+1}\right )+d x \log (f) \left (\log \left (\frac {a+b f^{c+d x}-1}{a-1}\right )-\log \left (\frac {a+b f^{c+d x}+1}{a+1}\right )+2 \coth ^{-1}\left (a+b f^{c+d x}\right )\right )}{2 d \log (f)} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[a + b*f^(c + d*x)],x]

[Out]

(d*x*Log[f]*(2*ArcCoth[a + b*f^(c + d*x)] + Log[(-1 + a + b*f^(c + d*x))/(-1 + a)] - Log[(1 + a + b*f^(c + d*x
))/(1 + a)]) + PolyLog[2, -((b*f^(c + d*x))/(-1 + a))] - PolyLog[2, -((b*f^(c + d*x))/(1 + a))])/(2*d*Log[f])

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 283, normalized size = 1.68 \[ \frac {d x \log \relax (f) \log \left (\frac {b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a + 1}{b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a - 1}\right ) + c \log \left (b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a + 1\right ) \log \relax (f) - c \log \left (b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a - 1\right ) \log \relax (f) - {\left (d x + c\right )} \log \relax (f) \log \left (\frac {b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a + 1}{a + 1}\right ) + {\left (d x + c\right )} \log \relax (f) \log \left (\frac {b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a - 1}{a - 1}\right ) - {\rm Li}_2\left (-\frac {b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a + 1}{a + 1} + 1\right ) + {\rm Li}_2\left (-\frac {b \cosh \left ({\left (d x + c\right )} \log \relax (f)\right ) + b \sinh \left ({\left (d x + c\right )} \log \relax (f)\right ) + a - 1}{a - 1} + 1\right )}{2 \, d \log \relax (f)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(a+b*f^(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(d*x*log(f)*log((b*cosh((d*x + c)*log(f)) + b*sinh((d*x + c)*log(f)) + a + 1)/(b*cosh((d*x + c)*log(f)) +
b*sinh((d*x + c)*log(f)) + a - 1)) + c*log(b*cosh((d*x + c)*log(f)) + b*sinh((d*x + c)*log(f)) + a + 1)*log(f)
 - c*log(b*cosh((d*x + c)*log(f)) + b*sinh((d*x + c)*log(f)) + a - 1)*log(f) - (d*x + c)*log(f)*log((b*cosh((d
*x + c)*log(f)) + b*sinh((d*x + c)*log(f)) + a + 1)/(a + 1)) + (d*x + c)*log(f)*log((b*cosh((d*x + c)*log(f))
+ b*sinh((d*x + c)*log(f)) + a - 1)/(a - 1)) - dilog(-(b*cosh((d*x + c)*log(f)) + b*sinh((d*x + c)*log(f)) + a
 + 1)/(a + 1) + 1) + dilog(-(b*cosh((d*x + c)*log(f)) + b*sinh((d*x + c)*log(f)) + a - 1)/(a - 1) + 1))/(d*log
(f))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \operatorname {arcoth}\left (b f^{d x + c} + a\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(a+b*f^(d*x+c)),x, algorithm="giac")

[Out]

integrate(arccoth(b*f^(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 164, normalized size = 0.98 \[ \frac {\ln \left (b \,f^{d x +c}\right ) \mathrm {arccoth}\left (a +b \,f^{d x +c}\right )}{d \ln \relax (f )}+\frac {\dilog \left (\frac {b \,f^{d x +c}+a -1}{a -1}\right )}{2 d \ln \relax (f )}+\frac {\ln \left (b \,f^{d x +c}\right ) \ln \left (\frac {b \,f^{d x +c}+a -1}{a -1}\right )}{2 d \ln \relax (f )}-\frac {\dilog \left (\frac {1+a +b \,f^{d x +c}}{1+a}\right )}{2 d \ln \relax (f )}-\frac {\ln \left (b \,f^{d x +c}\right ) \ln \left (\frac {1+a +b \,f^{d x +c}}{1+a}\right )}{2 d \ln \relax (f )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(a+b*f^(d*x+c)),x)

[Out]

1/d/ln(f)*ln(b*f^(d*x+c))*arccoth(a+b*f^(d*x+c))+1/2/d/ln(f)*dilog((b*f^(d*x+c)+a-1)/(a-1))+1/2/d/ln(f)*ln(b*f
^(d*x+c))*ln((b*f^(d*x+c)+a-1)/(a-1))-1/2/d/ln(f)*dilog((1+a+b*f^(d*x+c))/(1+a))-1/2/d/ln(f)*ln(b*f^(d*x+c))*l
n((1+a+b*f^(d*x+c))/(1+a))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 202, normalized size = 1.20 \[ \frac {{\left (d x + c\right )} \operatorname {arcoth}\left (b f^{d x + c} + a\right )}{d} - \frac {{\left (d x + c\right )} b {\left (\frac {\log \left (b f^{d x + c} + a + 1\right )}{b} - \frac {\log \left (b f^{d x + c} + a - 1\right )}{b}\right )} \log \relax (f) - b {\left (\frac {\log \left (b f^{d x + c} + a + 1\right ) \log \left (-\frac {b f^{d x + c} + a + 1}{a + 1} + 1\right ) + {\rm Li}_2\left (\frac {b f^{d x + c} + a + 1}{a + 1}\right )}{b} - \frac {\log \left (b f^{d x + c} + a - 1\right ) \log \left (-\frac {b f^{d x + c} + a - 1}{a - 1} + 1\right ) + {\rm Li}_2\left (\frac {b f^{d x + c} + a - 1}{a - 1}\right )}{b}\right )}}{2 \, d \log \relax (f)} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(a+b*f^(d*x+c)),x, algorithm="maxima")

[Out]

(d*x + c)*arccoth(b*f^(d*x + c) + a)/d - 1/2*((d*x + c)*b*(log(b*f^(d*x + c) + a + 1)/b - log(b*f^(d*x + c) +
a - 1)/b)*log(f) - b*((log(b*f^(d*x + c) + a + 1)*log(-(b*f^(d*x + c) + a + 1)/(a + 1) + 1) + dilog((b*f^(d*x
+ c) + a + 1)/(a + 1)))/b - (log(b*f^(d*x + c) + a - 1)*log(-(b*f^(d*x + c) + a - 1)/(a - 1) + 1) + dilog((b*f
^(d*x + c) + a - 1)/(a - 1)))/b))/(d*log(f))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \mathrm {acoth}\left (a+b\,f^{c+d\,x}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(a + b*f^(c + d*x)),x)

[Out]

int(acoth(a + b*f^(c + d*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(a+b*f**(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________