3.274 \(\int (a+b \coth ^{-1}(c x)) (d+e \log (1-c^2 x^2)) \, dx\)

Optimal. Leaf size=104 \[ x \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )+\frac {e \left (a+b \coth ^{-1}(c x)\right )^2}{b c}-2 a e x+\frac {b \left (e \log \left (1-c^2 x^2\right )+d\right )^2}{4 c e}-\frac {b e \log \left (1-c^2 x^2\right )}{c}-2 b e x \coth ^{-1}(c x) \]

[Out]

-2*a*e*x-2*b*e*x*arccoth(c*x)+e*(a+b*arccoth(c*x))^2/b/c-b*e*ln(-c^2*x^2+1)/c+x*(a+b*arccoth(c*x))*(d+e*ln(-c^
2*x^2+1))+1/4*b*(d+e*ln(-c^2*x^2+1))^2/c/e

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6074, 2475, 2390, 2301, 5981, 5911, 260, 5949} \[ x \left (a+b \coth ^{-1}(c x)\right ) \left (e \log \left (1-c^2 x^2\right )+d\right )+\frac {e \left (a+b \coth ^{-1}(c x)\right )^2}{b c}-2 a e x+\frac {b \left (e \log \left (1-c^2 x^2\right )+d\right )^2}{4 c e}-\frac {b e \log \left (1-c^2 x^2\right )}{c}-2 b e x \coth ^{-1}(c x) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]),x]

[Out]

-2*a*e*x - 2*b*e*x*ArcCoth[c*x] + (e*(a + b*ArcCoth[c*x])^2)/(b*c) - (b*e*Log[1 - c^2*x^2])/c + x*(a + b*ArcCo
th[c*x])*(d + e*Log[1 - c^2*x^2]) + (b*(d + e*Log[1 - c^2*x^2])^2)/(4*c*e)

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2475

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rule 5911

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcCoth[c*x])^p, x] - Dist[b*c*p, In
t[(x*(a + b*ArcCoth[c*x])^(p - 1))/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 0]

Rule 5949

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcCoth[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 5981

Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[f^2
/e, Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p, x], x] - Dist[(d*f^2)/e, Int[((f*x)^(m - 2)*(a + b*ArcCoth[c*x])
^p)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]

Rule 6074

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.)), x_Symbol] :> Simp[x*(d + e*
Log[f + g*x^2])*(a + b*ArcCoth[c*x]), x] + (-Dist[b*c, Int[(x*(d + e*Log[f + g*x^2]))/(1 - c^2*x^2), x], x] -
Dist[2*e*g, Int[(x^2*(a + b*ArcCoth[c*x]))/(f + g*x^2), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x]

Rubi steps

\begin {align*} \int \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right ) \, dx &=x \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )-(b c) \int \frac {x \left (d+e \log \left (1-c^2 x^2\right )\right )}{1-c^2 x^2} \, dx+\left (2 c^2 e\right ) \int \frac {x^2 \left (a+b \coth ^{-1}(c x)\right )}{1-c^2 x^2} \, dx\\ &=x \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )-\frac {1}{2} (b c) \operatorname {Subst}\left (\int \frac {d+e \log \left (1-c^2 x\right )}{1-c^2 x} \, dx,x,x^2\right )-(2 e) \int \left (a+b \coth ^{-1}(c x)\right ) \, dx+(2 e) \int \frac {a+b \coth ^{-1}(c x)}{1-c^2 x^2} \, dx\\ &=-2 a e x+\frac {e \left (a+b \coth ^{-1}(c x)\right )^2}{b c}+x \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac {b \operatorname {Subst}\left (\int \frac {d+e \log (x)}{x} \, dx,x,1-c^2 x^2\right )}{2 c}-(2 b e) \int \coth ^{-1}(c x) \, dx\\ &=-2 a e x-2 b e x \coth ^{-1}(c x)+\frac {e \left (a+b \coth ^{-1}(c x)\right )^2}{b c}+x \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac {b \left (d+e \log \left (1-c^2 x^2\right )\right )^2}{4 c e}+(2 b c e) \int \frac {x}{1-c^2 x^2} \, dx\\ &=-2 a e x-2 b e x \coth ^{-1}(c x)+\frac {e \left (a+b \coth ^{-1}(c x)\right )^2}{b c}-\frac {b e \log \left (1-c^2 x^2\right )}{c}+x \left (a+b \coth ^{-1}(c x)\right ) \left (d+e \log \left (1-c^2 x^2\right )\right )+\frac {b \left (d+e \log \left (1-c^2 x^2\right )\right )^2}{4 c e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 144, normalized size = 1.38 \[ a e x \log \left (1-c^2 x^2\right )+\frac {2 a e \tanh ^{-1}(c x)}{c}+a d x-2 a e x+\frac {b d \log \left (1-c^2 x^2\right )}{2 c}+\frac {b e \log ^2\left (1-c^2 x^2\right )}{4 c}-\frac {b e \log \left (1-c^2 x^2\right )}{c}+b e x \log \left (1-c^2 x^2\right ) \coth ^{-1}(c x)+b d x \coth ^{-1}(c x)+\frac {b e \coth ^{-1}(c x)^2}{c}-2 b e x \coth ^{-1}(c x) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCoth[c*x])*(d + e*Log[1 - c^2*x^2]),x]

[Out]

a*d*x - 2*a*e*x + b*d*x*ArcCoth[c*x] - 2*b*e*x*ArcCoth[c*x] + (b*e*ArcCoth[c*x]^2)/c + (2*a*e*ArcTanh[c*x])/c
+ (b*d*Log[1 - c^2*x^2])/(2*c) - (b*e*Log[1 - c^2*x^2])/c + a*e*x*Log[1 - c^2*x^2] + b*e*x*ArcCoth[c*x]*Log[1
- c^2*x^2] + (b*e*Log[1 - c^2*x^2]^2)/(4*c)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 130, normalized size = 1.25 \[ \frac {b e \log \left (-c^{2} x^{2} + 1\right )^{2} + b e \log \left (\frac {c x + 1}{c x - 1}\right )^{2} + 4 \, {\left (a c d - 2 \, a c e\right )} x + 2 \, {\left (2 \, a c e x + b d - 2 \, b e\right )} \log \left (-c^{2} x^{2} + 1\right ) + 2 \, {\left (b c e x \log \left (-c^{2} x^{2} + 1\right ) + 2 \, a e + {\left (b c d - 2 \, b c e\right )} x\right )} \log \left (\frac {c x + 1}{c x - 1}\right )}{4 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="fricas")

[Out]

1/4*(b*e*log(-c^2*x^2 + 1)^2 + b*e*log((c*x + 1)/(c*x - 1))^2 + 4*(a*c*d - 2*a*c*e)*x + 2*(2*a*c*e*x + b*d - 2
*b*e)*log(-c^2*x^2 + 1) + 2*(b*c*e*x*log(-c^2*x^2 + 1) + 2*a*e + (b*c*d - 2*b*c*e)*x)*log((c*x + 1)/(c*x - 1))
)/c

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {arcoth}\left (c x\right ) + a\right )} {\left (e \log \left (-c^{2} x^{2} + 1\right ) + d\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="giac")

[Out]

integrate((b*arccoth(c*x) + a)*(e*log(-c^2*x^2 + 1) + d), x)

________________________________________________________________________________________

maple [C]  time = 1.80, size = 2210, normalized size = 21.25 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccoth(c*x))*(d+e*ln(-c^2*x^2+1)),x)

[Out]

2/c*b*arccoth(c*x)*e*ln(2)-2/c*b*ln((c*x+1)/(c*x-1)-1)*ln(2)*e+2*b*arccoth(c*x)*ln(2)*x*e-2*b*e*x*arccoth(c*x)
+a*d*x-2*a*x*e+I/c*b*e*arccoth(c*x)*Pi-1/2*I/c*b*arccoth(c*x)*e*Pi*csgn(I*(c*x+1)/(c*x-1))^3-1/2*I/c*b*Pi*ln((
c*x+1)/(c*x-1)-1)*e*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3-1/2*I/c*b*Pi*ln((c*x+1)/(c*x-1)-1)*e*csgn(
I*((c*x+1)/(c*x-1)-1)^2)^3+1/c*b*ln((c*x+1)/(c*x-1)-1)^2*e+1/c*b*arccoth(c*x)*d-2/c*b*arccoth(c*x)*e-1/c*b*d*l
n((c*x+1)/(c*x-1)-1)+2/c*b*e*ln((c*x+1)/(c*x-1)-1)+b*arccoth(c*x)*x*d+a*e*x*ln(-c^2*x^2+1)+a*e/c*ln(c*x+1)-a*e
/c*ln(c*x-1)-2*b*arccoth(c*x)*ln((c*x+1)/(c*x-1)-1)*x*e+I/c*b*csgn(I*(c*x+1)/(c*x-1))^2*csgn(I/((c*x-1)/(c*x+1
))^(1/2))*e*arccoth(c*x)*Pi+I/c*b*Pi*ln((c*x+1)/(c*x-1)-1)*e*csgn(I*((c*x+1)/(c*x-1)-1))*csgn(I*((c*x+1)/(c*x-
1)-1)^2)^2+I*b*arccoth(c*x)*csgn(I*(c*x+1)/(c*x-1))^2*csgn(I/((c*x-1)/(c*x+1))^(1/2))*Pi*x*e+1/2*I/c*b*arccoth
(c*x)*e*Pi*csgn(I*(c*x+1)/(c*x-1))*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2+1/2*I/c*b*arccoth(c*x)*e*Pi
*csgn(I/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2-I/c*b*arccoth(c*x)*e*Pi*csgn(I*
((c*x+1)/(c*x-1)-1))*csgn(I*((c*x+1)/(c*x-1)-1)^2)^2+1/2*I/c*b*arccoth(c*x)*e*Pi*csgn(I*((c*x+1)/(c*x-1)-1))^2
*csgn(I*((c*x+1)/(c*x-1)-1)^2)-1/2*I/c*b*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*e*arccoth(c
*x)*Pi-1/2*I/c*b*Pi*ln((c*x+1)/(c*x-1)-1)*e*csgn(I*(c*x+1)/(c*x-1))*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)
^2)^2-1/2*I/c*b*Pi*ln((c*x+1)/(c*x-1)-1)*e*csgn(I/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-
1)-1)^2)^2-1/2*I/c*b*Pi*ln((c*x+1)/(c*x-1)-1)*e*csgn(I*((c*x+1)/(c*x-1)-1))^2*csgn(I*((c*x+1)/(c*x-1)-1)^2)-I/
c*b*Pi*ln((c*x+1)/(c*x-1)-1)*e*csgn(I/((c*x-1)/(c*x+1))^(1/2))*csgn(I*(c*x+1)/(c*x-1))^2+1/2*I/c*b*Pi*ln((c*x+
1)/(c*x-1)-1)*e*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*csgn(I*(c*x+1)/(c*x-1))+1/2*I*b*arccoth(c*x)*csgn(I*(c*x+1)/
(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I*(c*x+1)/(c*x-1))*Pi*x*e-I*b*arccoth(c*x)*csgn(I*((c*x+1)/(c*x-1)-1)^2)
^2*csgn(I*((c*x+1)/(c*x-1)-1))*Pi*x*e-ln((c*x-1)/(c*x+1))*(arccoth(c*x)*x*c+arccoth(c*x)-ln((c*x+1)/(c*x-1)-1)
)*b*e/c-1/2*I*b*arccoth(c*x)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*
x+1)/(c*x-1)-1)^2)*Pi*x*e-1/2*I/c*b*arccoth(c*x)*e*Pi*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x+1)/(c*x-1)-1)^2)*cs
gn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)+1/2*I/c*b*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)*csgn(I/((c
*x+1)/(c*x-1)-1)^2)*csgn(I*(c*x+1)/(c*x-1))*e*ln((c*x+1)/(c*x-1)-1)*Pi+I*b*arccoth(c*x)*Pi*x*e-I/c*b*e*ln((c*x
+1)/(c*x-1)-1)*Pi+1/2*I*b*arccoth(c*x)*csgn(I*((c*x+1)/(c*x-1)-1)^2)*csgn(I*((c*x+1)/(c*x-1)-1))^2*Pi*x*e-1/2*
I*b*arccoth(c*x)*csgn(I*(c*x+1)/(c*x-1))*csgn(I/((c*x-1)/(c*x+1))^(1/2))^2*Pi*x*e+1/2*I*b*arccoth(c*x)*csgn(I*
(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*csgn(I/((c*x+1)/(c*x-1)-1)^2)*Pi*x*e+1/2*I/c*b*Pi*ln((c*x+1)/(c*x-1)-
1)*e*csgn(I*(c*x+1)/(c*x-1))^3-I/c*b*arccoth(c*x)*e*Pi*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2+I/c*b*P
i*ln((c*x+1)/(c*x-1)-1)*e*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2+1/2*I*b*arccoth(c*x)*csgn(I*(c*x+1)/
(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3*Pi*x*e+1/2*I*b*arccoth(c*x)*csgn(I*((c*x+1)/(c*x-1)-1)^2)^3*Pi*x*e-1/2*I*b*ar
ccoth(c*x)*csgn(I*(c*x+1)/(c*x-1))^3*Pi*x*e-I*b*arccoth(c*x)*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^2*P
i*x*e+1/2*I/c*b*arccoth(c*x)*e*Pi*csgn(I*(c*x+1)/(c*x-1)/((c*x+1)/(c*x-1)-1)^2)^3+1/2*I/c*b*arccoth(c*x)*e*Pi*
csgn(I*((c*x+1)/(c*x-1)-1)^2)^3

________________________________________________________________________________________

maxima [C]  time = 0.33, size = 178, normalized size = 1.71 \[ -{\left (c^{2} {\left (\frac {2 \, x}{c^{2}} - \frac {\log \left (c x + 1\right )}{c^{3}} + \frac {\log \left (c x - 1\right )}{c^{3}}\right )} - x \log \left (-c^{2} x^{2} + 1\right )\right )} b e \operatorname {arcoth}\left (c x\right ) - {\left (c^{2} {\left (\frac {2 \, x}{c^{2}} - \frac {\log \left (c x + 1\right )}{c^{3}} + \frac {\log \left (c x - 1\right )}{c^{3}}\right )} - x \log \left (-c^{2} x^{2} + 1\right )\right )} a e + a d x + \frac {{\left (2 \, c x \operatorname {arcoth}\left (c x\right ) + \log \left (-c^{2} x^{2} + 1\right )\right )} b d}{2 \, c} + \frac {{\left ({\left (i \, \pi + 2 \, \log \left (c x - 1\right ) - 2\right )} \log \left (c x + 1\right ) + {\left (i \, \pi - 2\right )} \log \left (c x - 1\right )\right )} b e}{2 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccoth(c*x))*(d+e*log(-c^2*x^2+1)),x, algorithm="maxima")

[Out]

-(c^2*(2*x/c^2 - log(c*x + 1)/c^3 + log(c*x - 1)/c^3) - x*log(-c^2*x^2 + 1))*b*e*arccoth(c*x) - (c^2*(2*x/c^2
- log(c*x + 1)/c^3 + log(c*x - 1)/c^3) - x*log(-c^2*x^2 + 1))*a*e + a*d*x + 1/2*(2*c*x*arccoth(c*x) + log(-c^2
*x^2 + 1))*b*d/c + 1/2*((I*pi + 2*log(c*x - 1) - 2)*log(c*x + 1) + (I*pi - 2)*log(c*x - 1))*b*e/c

________________________________________________________________________________________

mupad [B]  time = 2.09, size = 315, normalized size = 3.03 \[ \ln \left (\frac {1}{c\,x}+1\right )\,\left (\frac {b\,d\,x}{2}-b\,e\,x+\frac {b\,e\,x\,\ln \left (1-c^2\,x^2\right )}{2}\right )+\ln \left (1-\frac {1}{c\,x}\right )\,\left (\frac {b\,d\,x^2-b\,c^2\,d\,x^4}{2\,\left (c\,x^2+x\right )\,\left (c\,x-1\right )}-\frac {2\,b\,e\,x^2-2\,b\,c^2\,e\,x^4}{2\,\left (c\,x^2+x\right )\,\left (c\,x-1\right )}+\frac {\ln \left (1-c^2\,x^2\right )\,\left (b\,e\,x^2-b\,c^2\,e\,x^4\right )}{2\,\left (c\,x^2+x\right )\,\left (c\,x-1\right )}-\frac {b\,e\,\ln \left (\frac {1}{c\,x}+1\right )}{2\,c}\right )+a\,x\,\left (d-2\,e\right )+\frac {\ln \left (c\,x+1\right )\,\left (2\,a\,e+b\,d-2\,b\,e\right )}{2\,c}-\frac {\ln \left (c\,x-1\right )\,\left (2\,a\,e-b\,d+2\,b\,e\right )}{2\,c}+\frac {b\,e\,{\ln \left (\frac {1}{c\,x}+1\right )}^2}{4\,c}+\frac {b\,e\,{\ln \left (1-\frac {1}{c\,x}\right )}^2}{4\,c}+\frac {b\,e\,{\ln \left (1-c^2\,x^2\right )}^2}{4\,c}+a\,e\,x\,\ln \left (1-c^2\,x^2\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acoth(c*x))*(d + e*log(1 - c^2*x^2)),x)

[Out]

log(1/(c*x) + 1)*((b*d*x)/2 - b*e*x + (b*e*x*log(1 - c^2*x^2))/2) + log(1 - 1/(c*x))*((b*d*x^2 - b*c^2*d*x^4)/
(2*(x + c*x^2)*(c*x - 1)) - (2*b*e*x^2 - 2*b*c^2*e*x^4)/(2*(x + c*x^2)*(c*x - 1)) + (log(1 - c^2*x^2)*(b*e*x^2
 - b*c^2*e*x^4))/(2*(x + c*x^2)*(c*x - 1)) - (b*e*log(1/(c*x) + 1))/(2*c)) + a*x*(d - 2*e) + (log(c*x + 1)*(2*
a*e + b*d - 2*b*e))/(2*c) - (log(c*x - 1)*(2*a*e - b*d + 2*b*e))/(2*c) + (b*e*log(1/(c*x) + 1)^2)/(4*c) + (b*e
*log(1 - 1/(c*x))^2)/(4*c) + (b*e*log(1 - c^2*x^2)^2)/(4*c) + a*e*x*log(1 - c^2*x^2)

________________________________________________________________________________________

sympy [A]  time = 2.30, size = 155, normalized size = 1.49 \[ \begin {cases} a d x + a e x \log {\left (- c^{2} x^{2} + 1 \right )} - 2 a e x + \frac {2 a e \operatorname {acoth}{\left (c x \right )}}{c} + b d x \operatorname {acoth}{\left (c x \right )} + b e x \log {\left (- c^{2} x^{2} + 1 \right )} \operatorname {acoth}{\left (c x \right )} - 2 b e x \operatorname {acoth}{\left (c x \right )} + \frac {b d \log {\left (- c^{2} x^{2} + 1 \right )}}{2 c} + \frac {b e \log {\left (- c^{2} x^{2} + 1 \right )}^{2}}{4 c} - \frac {b e \log {\left (- c^{2} x^{2} + 1 \right )}}{c} + \frac {b e \operatorname {acoth}^{2}{\left (c x \right )}}{c} & \text {for}\: c \neq 0 \\d x \left (a + \frac {i \pi b}{2}\right ) & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acoth(c*x))*(d+e*ln(-c**2*x**2+1)),x)

[Out]

Piecewise((a*d*x + a*e*x*log(-c**2*x**2 + 1) - 2*a*e*x + 2*a*e*acoth(c*x)/c + b*d*x*acoth(c*x) + b*e*x*log(-c*
*2*x**2 + 1)*acoth(c*x) - 2*b*e*x*acoth(c*x) + b*d*log(-c**2*x**2 + 1)/(2*c) + b*e*log(-c**2*x**2 + 1)**2/(4*c
) - b*e*log(-c**2*x**2 + 1)/c + b*e*acoth(c*x)**2/c, Ne(c, 0)), (d*x*(a + I*pi*b/2), True))

________________________________________________________________________________________