3.19 \(\int \frac {\coth ^{-1}(a x)^2}{x^2} \, dx\)

Optimal. Leaf size=55 \[ -a \text {Li}_2\left (\frac {2}{a x+1}-1\right )+a \coth ^{-1}(a x)^2-\frac {\coth ^{-1}(a x)^2}{x}+2 a \log \left (2-\frac {2}{a x+1}\right ) \coth ^{-1}(a x) \]

[Out]

a*arccoth(a*x)^2-arccoth(a*x)^2/x+2*a*arccoth(a*x)*ln(2-2/(a*x+1))-a*polylog(2,-1+2/(a*x+1))

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {5917, 5989, 5933, 2447} \[ -a \text {PolyLog}\left (2,\frac {2}{a x+1}-1\right )+a \coth ^{-1}(a x)^2-\frac {\coth ^{-1}(a x)^2}{x}+2 a \log \left (2-\frac {2}{a x+1}\right ) \coth ^{-1}(a x) \]

Antiderivative was successfully verified.

[In]

Int[ArcCoth[a*x]^2/x^2,x]

[Out]

a*ArcCoth[a*x]^2 - ArcCoth[a*x]^2/x + 2*a*ArcCoth[a*x]*Log[2 - 2/(1 + a*x)] - a*PolyLog[2, -1 + 2/(1 + a*x)]

Rule 2447

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[(Pq^m*(1 - u))/D[u, x]]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 5917

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
oth[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCoth[c*x])^(p - 1))/(1 -
 c^2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 5933

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[((a + b*ArcCoth[c*
x])^p*Log[2 - 2/(1 + (e*x)/d)])/d, x] - Dist[(b*c*p)/d, Int[((a + b*ArcCoth[c*x])^(p - 1)*Log[2 - 2/(1 + (e*x)
/d)])/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 5989

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcCoth[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Dist[1/d, Int[(a + b*ArcCoth[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {\coth ^{-1}(a x)^2}{x^2} \, dx &=-\frac {\coth ^{-1}(a x)^2}{x}+(2 a) \int \frac {\coth ^{-1}(a x)}{x \left (1-a^2 x^2\right )} \, dx\\ &=a \coth ^{-1}(a x)^2-\frac {\coth ^{-1}(a x)^2}{x}+(2 a) \int \frac {\coth ^{-1}(a x)}{x (1+a x)} \, dx\\ &=a \coth ^{-1}(a x)^2-\frac {\coth ^{-1}(a x)^2}{x}+2 a \coth ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )-\left (2 a^2\right ) \int \frac {\log \left (2-\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx\\ &=a \coth ^{-1}(a x)^2-\frac {\coth ^{-1}(a x)^2}{x}+2 a \coth ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )-a \text {Li}_2\left (-1+\frac {2}{1+a x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 49, normalized size = 0.89 \[ -a \text {Li}_2\left (-e^{-2 \coth ^{-1}(a x)}\right )+\frac {(a x-1) \coth ^{-1}(a x)^2}{x}+2 a \coth ^{-1}(a x) \log \left (e^{-2 \coth ^{-1}(a x)}+1\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcCoth[a*x]^2/x^2,x]

[Out]

((-1 + a*x)*ArcCoth[a*x]^2)/x + 2*a*ArcCoth[a*x]*Log[1 + E^(-2*ArcCoth[a*x])] - a*PolyLog[2, -E^(-2*ArcCoth[a*
x])]

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\operatorname {arcoth}\left (a x\right )^{2}}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(a*x)^2/x^2,x, algorithm="fricas")

[Out]

integral(arccoth(a*x)^2/x^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {arcoth}\left (a x\right )^{2}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(a*x)^2/x^2,x, algorithm="giac")

[Out]

integrate(arccoth(a*x)^2/x^2, x)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 159, normalized size = 2.89 \[ -\frac {\mathrm {arccoth}\left (a x \right )^{2}}{x}+2 a \,\mathrm {arccoth}\left (a x \right ) \ln \left (a x \right )-a \,\mathrm {arccoth}\left (a x \right ) \ln \left (a x -1\right )-a \,\mathrm {arccoth}\left (a x \right ) \ln \left (a x +1\right )-\frac {a \ln \left (a x -1\right )^{2}}{4}+a \dilog \left (\frac {1}{2}+\frac {a x}{2}\right )+\frac {a \ln \left (a x -1\right ) \ln \left (\frac {1}{2}+\frac {a x}{2}\right )}{2}+\frac {a \ln \left (a x +1\right )^{2}}{4}+\frac {a \ln \left (-\frac {a x}{2}+\frac {1}{2}\right ) \ln \left (\frac {1}{2}+\frac {a x}{2}\right )}{2}-\frac {a \ln \left (-\frac {a x}{2}+\frac {1}{2}\right ) \ln \left (a x +1\right )}{2}-a \dilog \left (a x \right )-a \dilog \left (a x +1\right )-a \ln \left (a x \right ) \ln \left (a x +1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(a*x)^2/x^2,x)

[Out]

-arccoth(a*x)^2/x+2*a*arccoth(a*x)*ln(a*x)-a*arccoth(a*x)*ln(a*x-1)-a*arccoth(a*x)*ln(a*x+1)-1/4*a*ln(a*x-1)^2
+a*dilog(1/2+1/2*a*x)+1/2*a*ln(a*x-1)*ln(1/2+1/2*a*x)+1/4*a*ln(a*x+1)^2+1/2*a*ln(-1/2*a*x+1/2)*ln(1/2+1/2*a*x)
-1/2*a*ln(-1/2*a*x+1/2)*ln(a*x+1)-a*dilog(a*x)-a*dilog(a*x+1)-a*ln(a*x)*ln(a*x+1)

________________________________________________________________________________________

maxima [B]  time = 0.32, size = 146, normalized size = 2.65 \[ \frac {1}{4} \, a^{2} {\left (\frac {\log \left (a x + 1\right )^{2} - 2 \, \log \left (a x + 1\right ) \log \left (a x - 1\right ) - \log \left (a x - 1\right )^{2}}{a} + \frac {4 \, {\left (\log \left (a x - 1\right ) \log \left (\frac {1}{2} \, a x + \frac {1}{2}\right ) + {\rm Li}_2\left (-\frac {1}{2} \, a x + \frac {1}{2}\right )\right )}}{a} - \frac {4 \, {\left (\log \left (a x + 1\right ) \log \relax (x) + {\rm Li}_2\left (-a x\right )\right )}}{a} + \frac {4 \, {\left (\log \left (-a x + 1\right ) \log \relax (x) + {\rm Li}_2\left (a x\right )\right )}}{a}\right )} - a {\left (\log \left (a^{2} x^{2} - 1\right ) - \log \left (x^{2}\right )\right )} \operatorname {arcoth}\left (a x\right ) - \frac {\operatorname {arcoth}\left (a x\right )^{2}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(a*x)^2/x^2,x, algorithm="maxima")

[Out]

1/4*a^2*((log(a*x + 1)^2 - 2*log(a*x + 1)*log(a*x - 1) - log(a*x - 1)^2)/a + 4*(log(a*x - 1)*log(1/2*a*x + 1/2
) + dilog(-1/2*a*x + 1/2))/a - 4*(log(a*x + 1)*log(x) + dilog(-a*x))/a + 4*(log(-a*x + 1)*log(x) + dilog(a*x))
/a) - a*(log(a^2*x^2 - 1) - log(x^2))*arccoth(a*x) - arccoth(a*x)^2/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\mathrm {acoth}\left (a\,x\right )}^2}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(a*x)^2/x^2,x)

[Out]

int(acoth(a*x)^2/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {acoth}^{2}{\left (a x \right )}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(a*x)**2/x**2,x)

[Out]

Integral(acoth(a*x)**2/x**2, x)

________________________________________________________________________________________