3.171 \(\int \frac {1}{\coth ^{-1}(\tanh (a+b x))^2} \, dx\)

Optimal. Leaf size=14 \[ -\frac {1}{b \coth ^{-1}(\tanh (a+b x))} \]

[Out]

-1/b/arccoth(tanh(b*x+a))

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2157, 30} \[ -\frac {1}{b \coth ^{-1}(\tanh (a+b x))} \]

Antiderivative was successfully verified.

[In]

Int[ArcCoth[Tanh[a + b*x]]^(-2),x]

[Out]

-(1/(b*ArcCoth[Tanh[a + b*x]]))

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rubi steps

\begin {align*} \int \frac {1}{\coth ^{-1}(\tanh (a+b x))^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\coth ^{-1}(\tanh (a+b x))\right )}{b}\\ &=-\frac {1}{b \coth ^{-1}(\tanh (a+b x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 1.00 \[ -\frac {1}{b \coth ^{-1}(\tanh (a+b x))} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[Tanh[a + b*x]]^(-2),x]

[Out]

-(1/(b*ArcCoth[Tanh[a + b*x]]))

________________________________________________________________________________________

fricas [B]  time = 0.65, size = 36, normalized size = 2.57 \[ -\frac {4 \, {\left (b x + a\right )}}{4 \, b^{3} x^{2} + 8 \, a b^{2} x + \pi ^{2} b + 4 \, a^{2} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arccoth(tanh(b*x+a))^2,x, algorithm="fricas")

[Out]

-4*(b*x + a)/(4*b^3*x^2 + 8*a*b^2*x + pi^2*b + 4*a^2*b)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\operatorname {arcoth}\left (\tanh \left (b x + a\right )\right )^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arccoth(tanh(b*x+a))^2,x, algorithm="giac")

[Out]

integrate(arccoth(tanh(b*x + a))^(-2), x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 15, normalized size = 1.07 \[ -\frac {1}{b \,\mathrm {arccoth}\left (\tanh \left (b x +a \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/arccoth(tanh(b*x+a))^2,x)

[Out]

-1/b/arccoth(tanh(b*x+a))

________________________________________________________________________________________

maxima [C]  time = 0.41, size = 18, normalized size = 1.29 \[ \frac {4}{-2 \, {\left (i \, \pi + 2 \, b x + 2 \, a\right )} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arccoth(tanh(b*x+a))^2,x, algorithm="maxima")

[Out]

4/((-2*I*pi - 4*b*x - 4*a)*b)

________________________________________________________________________________________

mupad [B]  time = 1.14, size = 14, normalized size = 1.00 \[ -\frac {1}{b\,\mathrm {acoth}\left (\mathrm {tanh}\left (a+b\,x\right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/acoth(tanh(a + b*x))^2,x)

[Out]

-1/(b*acoth(tanh(a + b*x)))

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/acoth(tanh(b*x+a))**2,x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________