3.99 \(\int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^2} \, dx\)

Optimal. Leaf size=70 \[ -\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac {\log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2} \]

[Out]

-1/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))+ln(x)/(b*x-arctanh(tanh(b*x+a)))^2-ln(arctanh(tanh(b*x+a)))
/(b*x-arctanh(tanh(b*x+a)))^2

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {2163, 2160, 2157, 29} \[ -\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac {\log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

-(1/((b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]])) + Log[x]/(b*x - ArcTanh[Tanh[a + b*x]])^2 - Log[A
rcTanh[Tanh[a + b*x]]]/(b*x - ArcTanh[Tanh[a + b*x]])^2

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 2160

Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Dist[b/(b*u - a*v), Int[1
/v, x], x] - Dist[a/(b*u - a*v), Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^2} \, dx &=-\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {\int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))} \, dx}{-b x+\tanh ^{-1}(\tanh (a+b x))}\\ &=-\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}-\frac {\int \frac {1}{x} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}+\frac {b \int \frac {1}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}+\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac {\log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 53, normalized size = 0.76 \[ \frac {\tanh ^{-1}(\tanh (a+b x)) \left (-\log \left (\tanh ^{-1}(\tanh (a+b x))\right )+\log (b x)+1\right )-b x}{\tanh ^{-1}(\tanh (a+b x)) \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

(-(b*x) + ArcTanh[Tanh[a + b*x]]*(1 + Log[b*x] - Log[ArcTanh[Tanh[a + b*x]]]))/(ArcTanh[Tanh[a + b*x]]*(-(b*x)
 + ArcTanh[Tanh[a + b*x]])^2)

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 39, normalized size = 0.56 \[ -\frac {{\left (b x + a\right )} \log \left (b x + a\right ) - {\left (b x + a\right )} \log \relax (x) - a}{a^{2} b x + a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/arctanh(tanh(b*x+a))^2,x, algorithm="fricas")

[Out]

-((b*x + a)*log(b*x + a) - (b*x + a)*log(x) - a)/(a^2*b*x + a^3)

________________________________________________________________________________________

giac [A]  time = 0.44, size = 31, normalized size = 0.44 \[ -\frac {\log \left ({\left | b x + a \right |}\right )}{a^{2}} + \frac {\log \left ({\left | x \right |}\right )}{a^{2}} + \frac {1}{{\left (b x + a\right )} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/arctanh(tanh(b*x+a))^2,x, algorithm="giac")

[Out]

-log(abs(b*x + a))/a^2 + log(abs(x))/a^2 + 1/((b*x + a)*a)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 67, normalized size = 0.96 \[ \frac {\ln \relax (x )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2}}-\frac {\ln \left (\arctanh \left (\tanh \left (b x +a \right )\right )\right )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2}}+\frac {1}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) \arctanh \left (\tanh \left (b x +a \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/arctanh(tanh(b*x+a))^2,x)

[Out]

1/(arctanh(tanh(b*x+a))-b*x)^2*ln(x)-1/(arctanh(tanh(b*x+a))-b*x)^2*ln(arctanh(tanh(b*x+a)))+1/(arctanh(tanh(b
*x+a))-b*x)/arctanh(tanh(b*x+a))

________________________________________________________________________________________

maxima [A]  time = 0.75, size = 28, normalized size = 0.40 \[ \frac {1}{a b x + a^{2}} - \frac {\log \left (b x + a\right )}{a^{2}} + \frac {\log \relax (x)}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/arctanh(tanh(b*x+a))^2,x, algorithm="maxima")

[Out]

1/(a*b*x + a^2) - log(b*x + a)/a^2 + log(x)/a^2

________________________________________________________________________________________

mupad [B]  time = 3.39, size = 359, normalized size = 5.13 \[ \frac {8\,b\,x-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\left (-4+\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,8{}\mathrm {i}\right )+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\left (-4+\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,8{}\mathrm {i}\right )}{\left (\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )\,{\left (\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*atanh(tanh(a + b*x))^2),x)

[Out]

(8*b*x - log(1/(exp(2*a)*exp(2*b*x) + 1))*(atan((log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log
(1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(
2*a)*exp(2*b*x) + 1)) + 2*b*x))*8i - 4) + log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*(atan((log((exp
(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*
a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*8i - 4))/((log(1/(exp(2*a
)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)))*(log(1/(exp(2*a)*exp(2*b*x) + 1)) -
 log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/atanh(tanh(b*x+a))**2,x)

[Out]

Integral(1/(x*atanh(tanh(a + b*x))**2), x)

________________________________________________________________________________________