3.279 \(\int \frac {\tanh ^{-1}(\coth (a+b x))}{x^2} \, dx\)

Optimal. Leaf size=17 \[ b \log (x)-\frac {\tanh ^{-1}(\coth (a+b x))}{x} \]

[Out]

-arctanh(coth(b*x+a))/x+b*ln(x)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2168, 29} \[ b \log (x)-\frac {\tanh ^{-1}(\coth (a+b x))}{x} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Coth[a + b*x]]/x^2,x]

[Out]

-(ArcTanh[Coth[a + b*x]]/x) + b*Log[x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\coth (a+b x))}{x^2} \, dx &=-\frac {\tanh ^{-1}(\coth (a+b x))}{x}+b \int \frac {1}{x} \, dx\\ &=-\frac {\tanh ^{-1}(\coth (a+b x))}{x}+b \log (x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 18, normalized size = 1.06 \[ -\frac {\tanh ^{-1}(\coth (a+b x))}{x}+b \log (x)+b \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Coth[a + b*x]]/x^2,x]

[Out]

b - ArcTanh[Coth[a + b*x]]/x + b*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 13, normalized size = 0.76 \[ \frac {b x \log \relax (x) - a}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(coth(b*x+a))/x^2,x, algorithm="fricas")

[Out]

(b*x*log(x) - a)/x

________________________________________________________________________________________

giac [B]  time = 0.16, size = 70, normalized size = 4.12 \[ b \log \left ({\left | x \right |}\right ) - \frac {\log \left (-\frac {\frac {e^{\left (2 \, b x + 2 \, a\right )} + 1}{e^{\left (2 \, b x + 2 \, a\right )} - 1} + 1}{\frac {e^{\left (2 \, b x + 2 \, a\right )} + 1}{e^{\left (2 \, b x + 2 \, a\right )} - 1} - 1}\right )}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(coth(b*x+a))/x^2,x, algorithm="giac")

[Out]

b*log(abs(x)) - 1/2*log(-((e^(2*b*x + 2*a) + 1)/(e^(2*b*x + 2*a) - 1) + 1)/((e^(2*b*x + 2*a) + 1)/(e^(2*b*x +
2*a) - 1) - 1))/x

________________________________________________________________________________________

maple [A]  time = 0.14, size = 18, normalized size = 1.06 \[ -\frac {\arctanh \left (\coth \left (b x +a \right )\right )}{x}+b \ln \relax (x ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(coth(b*x+a))/x^2,x)

[Out]

-arctanh(coth(b*x+a))/x+b*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 17, normalized size = 1.00 \[ b \log \relax (x) - \frac {\operatorname {artanh}\left (\coth \left (b x + a\right )\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(coth(b*x+a))/x^2,x, algorithm="maxima")

[Out]

b*log(x) - arctanh(coth(b*x + a))/x

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 17, normalized size = 1.00 \[ b\,\ln \relax (x)-\frac {\mathrm {atanh}\left (\mathrm {coth}\left (a+b\,x\right )\right )}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(coth(a + b*x))/x^2,x)

[Out]

b*log(x) - atanh(coth(a + b*x))/x

________________________________________________________________________________________

sympy [A]  time = 5.78, size = 42, normalized size = 2.47 \[ \begin {cases} \frac {\left \langle - \frac {\pi }{2}, \frac {\pi }{2}\right \rangle i}{x} & \text {for}\: a = \log {\left (- e^{- b x} \right )} \vee a = \log {\left (e^{- b x} \right )} \\b \log {\relax (x )} - \frac {\operatorname {atanh}{\left (\frac {1}{\tanh {\left (a + b x \right )}} \right )}}{x} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(coth(b*x+a))/x**2,x)

[Out]

Piecewise((AccumBounds(-pi/2, pi/2)*I/x, Eq(a, log(exp(-b*x))) | Eq(a, log(-exp(-b*x)))), (b*log(x) - atanh(1/
tanh(a + b*x))/x, True))

________________________________________________________________________________________