3.263 \(\int \frac {1}{x^{5/2} \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx\)

Optimal. Leaf size=146 \[ \frac {32 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {16 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {4 b}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}} \]

[Out]

2/3/x^(3/2)/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))^(3/2)+4*b/(b*x-arctanh(tanh(b*x+a)))^2/arctanh(tan
h(b*x+a))^(3/2)/x^(1/2)-16/3*b^2*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^3/arctanh(tanh(b*x+a))^(3/2)+32/3*b^2*x^(1
/2)/(b*x-arctanh(tanh(b*x+a)))^4/arctanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2171, 2167} \[ \frac {32 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {16 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {4 b}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(5/2)*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(-16*b^2*Sqrt[x])/(3*(b*x - ArcTanh[Tanh[a + b*x]])^3*ArcTanh[Tanh[a + b*x]]^(3/2)) + (4*b)/(Sqrt[x]*(b*x - Ar
cTanh[Tanh[a + b*x]])^2*ArcTanh[Tanh[a + b*x]]^(3/2)) + 2/(3*x^(3/2)*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Ta
nh[a + b*x]]^(3/2)) + (32*b^2*Sqrt[x])/(3*(b*x - ArcTanh[Tanh[a + b*x]])^4*Sqrt[ArcTanh[Tanh[a + b*x]]])

Rule 2167

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n}, x] && PiecewiseLinearQ[u, v, x] && E
qQ[m + n + 2, 0] && NeQ[m, -1]

Rule 2171

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] + Dist[(b*(m + n + 2))/((m + 1)*(b*u - a*v)), Int[u^(m + 1)*v^n, x], x] /;
NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^{5/2} \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx &=\frac {2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {(2 b) \int \frac {1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx}{b x-\tanh ^{-1}(\tanh (a+b x))}\\ &=\frac {4 b}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac {\left (8 b^2\right ) \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {16 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {4 b}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac {\left (16 b^2\right ) \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac {16 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {4 b}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {2}{3 x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {32 b^2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 79, normalized size = 0.54 \[ -\frac {2 \left (-9 b^2 x^2 \tanh ^{-1}(\tanh (a+b x))-9 b x \tanh ^{-1}(\tanh (a+b x))^2+\tanh ^{-1}(\tanh (a+b x))^3+b^3 x^3\right )}{3 x^{3/2} \tanh ^{-1}(\tanh (a+b x))^{3/2} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(5/2)*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(-2*(b^3*x^3 - 9*b^2*x^2*ArcTanh[Tanh[a + b*x]] - 9*b*x*ArcTanh[Tanh[a + b*x]]^2 + ArcTanh[Tanh[a + b*x]]^3))/
(3*x^(3/2)*ArcTanh[Tanh[a + b*x]]^(3/2)*(-(b*x) + ArcTanh[Tanh[a + b*x]])^4)

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 71, normalized size = 0.49 \[ \frac {2 \, {\left (16 \, b^{3} x^{3} + 24 \, a b^{2} x^{2} + 6 \, a^{2} b x - a^{3}\right )} \sqrt {b x + a} \sqrt {x}}{3 \, {\left (a^{4} b^{2} x^{4} + 2 \, a^{5} b x^{3} + a^{6} x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/arctanh(tanh(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

2/3*(16*b^3*x^3 + 24*a*b^2*x^2 + 6*a^2*b*x - a^3)*sqrt(b*x + a)*sqrt(x)/(a^4*b^2*x^4 + 2*a^5*b*x^3 + a^6*x^2)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 119, normalized size = 0.82 \[ \frac {2 \, \sqrt {x} {\left (\frac {8 \, b^{3} x}{a^{4}} + \frac {9 \, b^{2}}{a^{3}}\right )}}{3 \, {\left (b x + a\right )}^{\frac {3}{2}}} - \frac {8 \, {\left (3 \, b^{\frac {3}{2}} {\left (\sqrt {b} \sqrt {x} - \sqrt {b x + a}\right )}^{4} - 9 \, a b^{\frac {3}{2}} {\left (\sqrt {b} \sqrt {x} - \sqrt {b x + a}\right )}^{2} + 4 \, a^{2} b^{\frac {3}{2}}\right )}}{3 \, {\left ({\left (\sqrt {b} \sqrt {x} - \sqrt {b x + a}\right )}^{2} - a\right )}^{3} a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/arctanh(tanh(b*x+a))^(5/2),x, algorithm="giac")

[Out]

2/3*sqrt(x)*(8*b^3*x/a^4 + 9*b^2/a^3)/(b*x + a)^(3/2) - 8/3*(3*b^(3/2)*(sqrt(b)*sqrt(x) - sqrt(b*x + a))^4 - 9
*a*b^(3/2)*(sqrt(b)*sqrt(x) - sqrt(b*x + a))^2 + 4*a^2*b^(3/2))/(((sqrt(b)*sqrt(x) - sqrt(b*x + a))^2 - a)^3*a
^3)

________________________________________________________________________________________

maple [A]  time = 0.27, size = 150, normalized size = 1.03 \[ -\frac {2}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) x^{\frac {3}{2}} \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}-\frac {4 b \left (-\frac {1}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) \sqrt {x}\, \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}-\frac {4 b \left (\frac {\sqrt {x}}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}+\frac {2 \sqrt {x}}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}\right )}{\arctanh \left (\tanh \left (b x +a \right )\right )-b x}\right )}{\arctanh \left (\tanh \left (b x +a \right )\right )-b x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/arctanh(tanh(b*x+a))^(5/2),x)

[Out]

-2/3/(arctanh(tanh(b*x+a))-b*x)/x^(3/2)/arctanh(tanh(b*x+a))^(3/2)-4*b/(arctanh(tanh(b*x+a))-b*x)*(-1/(arctanh
(tanh(b*x+a))-b*x)/x^(1/2)/arctanh(tanh(b*x+a))^(3/2)-4*b/(arctanh(tanh(b*x+a))-b*x)*(1/3*x^(1/2)/(arctanh(tan
h(b*x+a))-b*x)/arctanh(tanh(b*x+a))^(3/2)+2/3/(arctanh(tanh(b*x+a))-b*x)^2*x^(1/2)/arctanh(tanh(b*x+a))^(1/2))
)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 56, normalized size = 0.38 \[ \frac {2 \, {\left (16 \, b^{4} x^{4} + 40 \, a b^{3} x^{3} + 30 \, a^{2} b^{2} x^{2} + 5 \, a^{3} b x - a^{4}\right )}}{3 \, {\left (b x + a\right )}^{\frac {5}{2}} a^{4} x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/arctanh(tanh(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

2/3*(16*b^4*x^4 + 40*a*b^3*x^3 + 30*a^2*b^2*x^2 + 5*a^3*b*x - a^4)/((b*x + a)^(5/2)*a^4*x^(3/2))

________________________________________________________________________________________

mupad [B]  time = 1.76, size = 406, normalized size = 2.78 \[ \frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\left (\frac {4}{3\,b^2\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}-\frac {128\,x^2}{{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3}+\frac {16\,x}{b\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}+\frac {512\,b\,x^3}{3\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^4}\right )}{x^{7/2}-\frac {x^{5/2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}{b}+\frac {x^{3/2}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{4\,b^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(5/2)*atanh(tanh(a + b*x))^(5/2)),x)

[Out]

((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(4/(3*b
^2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)) - (128
*x^2)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3 +
(16*x)/(b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^
2) + (512*b*x^3)/(3*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))
 + 2*b*x)^4)))/(x^(7/2) - (x^(5/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*e
xp(2*b*x) + 1)) + 2*b*x))/b + (x^(3/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*
a)*exp(2*b*x) + 1)) + 2*b*x)^2)/(4*b^2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/atanh(tanh(b*x+a))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________