3.261 \(\int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx\)

Optimal. Leaf size=71 \[ \frac {4 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}} \]

[Out]

-2/3*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))^(3/2)+4/3*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^2/ar
ctanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2171, 2167} \[ \frac {4 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(-2*Sqrt[x])/(3*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^(3/2)) + (4*Sqrt[x])/(3*(b*x - ArcTanh[T
anh[a + b*x]])^2*Sqrt[ArcTanh[Tanh[a + b*x]]])

Rule 2167

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n}, x] && PiecewiseLinearQ[u, v, x] && E
qQ[m + n + 2, 0] && NeQ[m, -1]

Rule 2171

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] + Dist[(b*(m + n + 2))/((m + 1)*(b*u - a*v)), Int[u^(m + 1)*v^n, x], x] /;
NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx &=-\frac {2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {2 \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{3 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {2 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {4 \sqrt {x}}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 47, normalized size = 0.66 \[ -\frac {2 \sqrt {x} \left (b x-3 \tanh ^{-1}(\tanh (a+b x))\right )}{3 \tanh ^{-1}(\tanh (a+b x))^{3/2} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(-2*Sqrt[x]*(b*x - 3*ArcTanh[Tanh[a + b*x]]))/(3*ArcTanh[Tanh[a + b*x]]^(3/2)*(-(b*x) + ArcTanh[Tanh[a + b*x]]
)^2)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 43, normalized size = 0.61 \[ \frac {2 \, {\left (2 \, b x + 3 \, a\right )} \sqrt {b x + a} \sqrt {x}}{3 \, {\left (a^{2} b^{2} x^{2} + 2 \, a^{3} b x + a^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/arctanh(tanh(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

2/3*(2*b*x + 3*a)*sqrt(b*x + a)*sqrt(x)/(a^2*b^2*x^2 + 2*a^3*b*x + a^4)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 25, normalized size = 0.35 \[ \frac {2 \, \sqrt {x} {\left (\frac {2 \, b x}{a^{2}} + \frac {3}{a}\right )}}{3 \, {\left (b x + a\right )}^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/arctanh(tanh(b*x+a))^(5/2),x, algorithm="giac")

[Out]

2/3*sqrt(x)*(2*b*x/a^2 + 3/a)/(b*x + a)^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.24, size = 58, normalized size = 0.82 \[ \frac {2 \sqrt {x}}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}+\frac {4 \sqrt {x}}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/arctanh(tanh(b*x+a))^(5/2),x)

[Out]

2/3*x^(1/2)/(arctanh(tanh(b*x+a))-b*x)/arctanh(tanh(b*x+a))^(3/2)+4/3/(arctanh(tanh(b*x+a))-b*x)^2*x^(1/2)/arc
tanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/arctanh(tanh(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x)*arctanh(tanh(b*x + a))^(5/2)), x)

________________________________________________________________________________________

mupad [B]  time = 1.66, size = 346, normalized size = 4.87 \[ \frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\left (\frac {16\,x^2}{3\,b\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}-\frac {x\,\left (48\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-48\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+96\,b\,x\right )}{12\,b^2\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}\right )}{x^{5/2}-\frac {x^{3/2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}{b}+\frac {\sqrt {x}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{4\,b^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*atanh(tanh(a + b*x))^(5/2)),x)

[Out]

((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*((16*x^
2)/(3*b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2)
 - (x*(48*log(2/(exp(2*a)*exp(2*b*x) + 1)) - 48*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 96*b*
x))/(12*b^2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x
)^2)))/(x^(5/2) - (x^(3/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x
) + 1)) + 2*b*x))/b + (x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2
*b*x) + 1)) + 2*b*x)^2)/(4*b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x} \operatorname {atanh}^{\frac {5}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/atanh(tanh(b*x+a))**(5/2),x)

[Out]

Integral(1/(sqrt(x)*atanh(tanh(a + b*x))**(5/2)), x)

________________________________________________________________________________________