3.254 \(\int \frac {1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx\)

Optimal. Leaf size=68 \[ \frac {2}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {4 b \sqrt {x}}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \]

[Out]

2/(b*x-arctanh(tanh(b*x+a)))/x^(1/2)/arctanh(tanh(b*x+a))^(1/2)-4*b*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^2/arcta
nh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2171, 2167} \[ \frac {2}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {4 b \sqrt {x}}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(3/2)*ArcTanh[Tanh[a + b*x]]^(3/2)),x]

[Out]

(-4*b*Sqrt[x])/((b*x - ArcTanh[Tanh[a + b*x]])^2*Sqrt[ArcTanh[Tanh[a + b*x]]]) + 2/(Sqrt[x]*(b*x - ArcTanh[Tan
h[a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]])

Rule 2167

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n}, x] && PiecewiseLinearQ[u, v, x] && E
qQ[m + n + 2, 0] && NeQ[m, -1]

Rule 2171

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] + Dist[(b*(m + n + 2))/((m + 1)*(b*u - a*v)), Int[u^(m + 1)*v^n, x], x] /;
NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx &=\frac {2}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {(2 b) \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{-b x+\tanh ^{-1}(\tanh (a+b x))}\\ &=-\frac {4 b \sqrt {x}}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}+\frac {2}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 43, normalized size = 0.63 \[ -\frac {2 \left (\tanh ^{-1}(\tanh (a+b x))+b x\right )}{\sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(3/2)*ArcTanh[Tanh[a + b*x]]^(3/2)),x]

[Out]

(-2*(b*x + ArcTanh[Tanh[a + b*x]]))/(Sqrt[x]*Sqrt[ArcTanh[Tanh[a + b*x]]]*(-(b*x) + ArcTanh[Tanh[a + b*x]])^2)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 34, normalized size = 0.50 \[ -\frac {2 \, {\left (2 \, b x + a\right )} \sqrt {b x + a} \sqrt {x}}{a^{2} b x^{2} + a^{3} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/arctanh(tanh(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

-2*(2*b*x + a)*sqrt(b*x + a)*sqrt(x)/(a^2*b*x^2 + a^3*x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 50, normalized size = 0.74 \[ -\frac {2 \, b \sqrt {x}}{\sqrt {b x + a} a^{2}} + \frac {4 \, \sqrt {b}}{{\left ({\left (\sqrt {b} \sqrt {x} - \sqrt {b x + a}\right )}^{2} - a\right )} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/arctanh(tanh(b*x+a))^(3/2),x, algorithm="giac")

[Out]

-2*b*sqrt(x)/(sqrt(b*x + a)*a^2) + 4*sqrt(b)/(((sqrt(b)*sqrt(x) - sqrt(b*x + a))^2 - a)*a)

________________________________________________________________________________________

maple [A]  time = 0.25, size = 59, normalized size = 0.87 \[ -\frac {2}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) \sqrt {x}\, \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}-\frac {4 b \sqrt {x}}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(3/2)/arctanh(tanh(b*x+a))^(3/2),x)

[Out]

-2/(arctanh(tanh(b*x+a))-b*x)/x^(1/2)/arctanh(tanh(b*x+a))^(1/2)-4*b/(arctanh(tanh(b*x+a))-b*x)^2*x^(1/2)/arct
anh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 32, normalized size = 0.47 \[ -\frac {2 \, {\left (2 \, b^{2} x^{2} + 3 \, a b x + a^{2}\right )}}{{\left (b x + a\right )}^{\frac {3}{2}} a^{2} \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/arctanh(tanh(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

-2*(2*b^2*x^2 + 3*a*b*x + a^2)/((b*x + a)^(3/2)*a^2*sqrt(x))

________________________________________________________________________________________

mupad [B]  time = 1.49, size = 281, normalized size = 4.13 \[ -\frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\left (\frac {16\,x}{{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}-\frac {8\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-8\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+16\,b\,x}{2\,b\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}\right )}{x^{3/2}-\frac {\sqrt {x}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}{2\,b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(3/2)*atanh(tanh(a + b*x))^(3/2)),x)

[Out]

-((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*((16*x
)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2 - (8*l
og(2/(exp(2*a)*exp(2*b*x) + 1)) - 8*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 16*b*x)/(2*b*(log
(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2)))/(x^(3/2)
- (x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)
)/(2*b))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{\frac {3}{2}} \operatorname {atanh}^{\frac {3}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(3/2)/atanh(tanh(b*x+a))**(3/2),x)

[Out]

Integral(1/(x**(3/2)*atanh(tanh(a + b*x))**(3/2)), x)

________________________________________________________________________________________