3.225 \(\int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt {x}} \, dx\)

Optimal. Leaf size=101 \[ \frac {3 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}{4 \sqrt {b}}-\frac {3}{4} \sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {1}{2} \sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2} \]

[Out]

3/4*arctanh(b^(1/2)*x^(1/2)/arctanh(tanh(b*x+a))^(1/2))*(b*x-arctanh(tanh(b*x+a)))^2/b^(1/2)+1/2*x^(1/2)*arcta
nh(tanh(b*x+a))^(3/2)-3/4*(b*x-arctanh(tanh(b*x+a)))*x^(1/2)*arctanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2169, 2165} \[ \frac {3 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}{4 \sqrt {b}}-\frac {3}{4} \sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {1}{2} \sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^(3/2)/Sqrt[x],x]

[Out]

(3*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]])^2)/(4*Sqrt[b]) - (3*
Sqrt[x]*(b*x - ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]])/4 + (Sqrt[x]*ArcTanh[Tanh[a + b*x]]^(3/2)
)/2

Rule 2165

Int[1/(Sqrt[u_]*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTanh[(
Rt[a*b, 2]*Sqrt[u])/(a*Sqrt[v])])/Rt[a*b, 2], x] /; NeQ[b*u - a*v, 0] && PosQ[a*b]] /; PiecewiseLinearQ[u, v,
x]

Rule 2169

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + n + 1)), x] - Dist[(n*(b*u - a*v))/(a*(m + n + 1)), Int[u^m*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]]
 /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !In
tegerQ[n] || LtQ[0, m, n])) &&  !ILtQ[m + n, -2]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{\sqrt {x}} \, dx &=\frac {1}{2} \sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2}-\frac {1}{4} \left (3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )\right ) \int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {x}} \, dx\\ &=-\frac {3}{4} \sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2} \sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2}+\frac {1}{8} \left (3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2\right ) \int \frac {1}{\sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=\frac {3 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}{4 \sqrt {b}}-\frac {3}{4} \sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2} \sqrt {x} \tanh ^{-1}(\tanh (a+b x))^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 83, normalized size = 0.82 \[ \frac {1}{4} \left (\sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (5 \tanh ^{-1}(\tanh (a+b x))-3 b x\right )+\frac {3 \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2 \log \left (\sqrt {b} \sqrt {\tanh ^{-1}(\tanh (a+b x))}+b \sqrt {x}\right )}{\sqrt {b}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^(3/2)/Sqrt[x],x]

[Out]

(Sqrt[x]*Sqrt[ArcTanh[Tanh[a + b*x]]]*(-3*b*x + 5*ArcTanh[Tanh[a + b*x]]) + (3*(-(b*x) + ArcTanh[Tanh[a + b*x]
])^2*Log[b*Sqrt[x] + Sqrt[b]*Sqrt[ArcTanh[Tanh[a + b*x]]]])/Sqrt[b])/4

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 119, normalized size = 1.18 \[ \left [\frac {3 \, a^{2} \sqrt {b} \log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right ) + 2 \, {\left (2 \, b^{2} x + 5 \, a b\right )} \sqrt {b x + a} \sqrt {x}}{8 \, b}, -\frac {3 \, a^{2} \sqrt {-b} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right ) - {\left (2 \, b^{2} x + 5 \, a b\right )} \sqrt {b x + a} \sqrt {x}}{4 \, b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^(1/2),x, algorithm="fricas")

[Out]

[1/8*(3*a^2*sqrt(b)*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) + 2*(2*b^2*x + 5*a*b)*sqrt(b*x + a)*sqrt(
x))/b, -1/4*(3*a^2*sqrt(-b)*arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) - (2*b^2*x + 5*a*b)*sqrt(b*x + a)*sqrt(
x))/b]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Warning, choosing root of [1,0,%%%{-4,[1
,0,0]%%%}+%%%{-4,[0,1,1]%%%}+%%%{-4,[0,1,0]%%%}+%%%{-4,[0,0,1]%%%},0,%%%{6,[2,0,0]%%%}+%%%{12,[1,1,1]%%%}+%%%{
4,[1,1,0]%%%}+%%%{4,[1,0,1]%%%}+%%%{6,[0,2,2]%%%}+%%%{4,[0,2,1]%%%}+%%%{6,[0,2,0]%%%}+%%%{4,[0,1,2]%%%}+%%%{4,
[0,1,1]%%%}+%%%{6,[0,0,2]%%%},0,%%%{-4,[3,0,0]%%%}+%%%{-12,[2,1,1]%%%}+%%%{4,[2,1,0]%%%}+%%%{4,[2,0,1]%%%}+%%%
{-12,[1,2,2]%%%}+%%%{8,[1,2,1]%%%}+%%%{4,[1,2,0]%%%}+%%%{8,[1,1,2]%%%}+%%%{-40,[1,1,1]%%%}+%%%{4,[1,0,2]%%%}+%
%%{-4,[0,3,3]%%%}+%%%{4,[0,3,2]%%%}+%%%{4,[0,3,1]%%%}+%%%{-4,[0,3,0]%%%}+%%%{4,[0,2,3]%%%}+%%%{-40,[0,2,2]%%%}
+%%%{4,[0,2,1]%%%}+%%%{4,[0,1,3]%%%}+%%%{4,[0,1,2]%%%}+%%%{-4,[0,0,3]%%%},0,%%%{1,[4,0,0]%%%}+%%%{4,[3,1,1]%%%
}+%%%{-4,[3,1,0]%%%}+%%%{-4,[3,0,1]%%%}+%%%{6,[2,2,2]%%%}+%%%{-12,[2,2,1]%%%}+%%%{6,[2,2,0]%%%}+%%%{-12,[2,1,2
]%%%}+%%%{4,[2,1,1]%%%}+%%%{6,[2,0,2]%%%}+%%%{4,[1,3,3]%%%}+%%%{-12,[1,3,2]%%%}+%%%{12,[1,3,1]%%%}+%%%{-4,[1,3
,0]%%%}+%%%{-12,[1,2,3]%%%}+%%%{8,[1,2,2]%%%}+%%%{4,[1,2,1]%%%}+%%%{12,[1,1,3]%%%}+%%%{4,[1,1,2]%%%}+%%%{-4,[1
,0,3]%%%}+%%%{1,[0,4,4]%%%}+%%%{-4,[0,4,3]%%%}+%%%{6,[0,4,2]%%%}+%%%{-4,[0,4,1]%%%}+%%%{1,[0,4,0]%%%}+%%%{-4,[
0,3,4]%%%}+%%%{4,[0,3,3]%%%}+%%%{4,[0,3,2]%%%}+%%%{-4,[0,3,1]%%%}+%%%{6,[0,2,4]%%%}+%%%{4,[0,2,3]%%%}+%%%{6,[0
,2,2]%%%}+%%%{-4,[0,1,4]%%%}+%%%{-4,[0,1,3]%%%}+%%%{1,[0,0,4]%%%}] at parameters values [0,85.3561567818,61.79
37478349]Warning, choosing root of [1,0,%%%{-4,[1,0,0]%%%}+%%%{-4,[0,1,1]%%%}+%%%{-4,[0,1,0]%%%}+%%%{-4,[0,0,1
]%%%},0,%%%{6,[2,0,0]%%%}+%%%{12,[1,1,1]%%%}+%%%{4,[1,1,0]%%%}+%%%{4,[1,0,1]%%%}+%%%{6,[0,2,2]%%%}+%%%{4,[0,2,
1]%%%}+%%%{6,[0,2,0]%%%}+%%%{4,[0,1,2]%%%}+%%%{4,[0,1,1]%%%}+%%%{6,[0,0,2]%%%},0,%%%{-4,[3,0,0]%%%}+%%%{-12,[2
,1,1]%%%}+%%%{4,[2,1,0]%%%}+%%%{4,[2,0,1]%%%}+%%%{-12,[1,2,2]%%%}+%%%{8,[1,2,1]%%%}+%%%{4,[1,2,0]%%%}+%%%{8,[1
,1,2]%%%}+%%%{-40,[1,1,1]%%%}+%%%{4,[1,0,2]%%%}+%%%{-4,[0,3,3]%%%}+%%%{4,[0,3,2]%%%}+%%%{4,[0,3,1]%%%}+%%%{-4,
[0,3,0]%%%}+%%%{4,[0,2,3]%%%}+%%%{-40,[0,2,2]%%%}+%%%{4,[0,2,1]%%%}+%%%{4,[0,1,3]%%%}+%%%{4,[0,1,2]%%%}+%%%{-4
,[0,0,3]%%%},0,%%%{1,[4,0,0]%%%}+%%%{4,[3,1,1]%%%}+%%%{-4,[3,1,0]%%%}+%%%{-4,[3,0,1]%%%}+%%%{6,[2,2,2]%%%}+%%%
{-12,[2,2,1]%%%}+%%%{6,[2,2,0]%%%}+%%%{-12,[2,1,2]%%%}+%%%{4,[2,1,1]%%%}+%%%{6,[2,0,2]%%%}+%%%{4,[1,3,3]%%%}+%
%%{-12,[1,3,2]%%%}+%%%{12,[1,3,1]%%%}+%%%{-4,[1,3,0]%%%}+%%%{-12,[1,2,3]%%%}+%%%{8,[1,2,2]%%%}+%%%{4,[1,2,1]%%
%}+%%%{12,[1,1,3]%%%}+%%%{4,[1,1,2]%%%}+%%%{-4,[1,0,3]%%%}+%%%{1,[0,4,4]%%%}+%%%{-4,[0,4,3]%%%}+%%%{6,[0,4,2]%
%%}+%%%{-4,[0,4,1]%%%}+%%%{1,[0,4,0]%%%}+%%%{-4,[0,3,4]%%%}+%%%{4,[0,3,3]%%%}+%%%{4,[0,3,2]%%%}+%%%{-4,[0,3,1]
%%%}+%%%{6,[0,2,4]%%%}+%%%{4,[0,2,3]%%%}+%%%{6,[0,2,2]%%%}+%%%{-4,[0,1,4]%%%}+%%%{-4,[0,1,3]%%%}+%%%{1,[0,0,4]
%%%}] at parameters values [0,71.707969239,78.6493344628]sqrt(2)/2/2/abs(b)*b^2/b*(2*(1/sqrt(2)/b*sqrt(a+b*x)*
sqrt(a+b*x)+3*a/2/sqrt(2)/b)*sqrt(a+b*x)*sqrt(-a*b+b*(a+b*x))-6*a^2/2/sqrt(2)/sqrt(b)*ln(abs(sqrt(-a*b+b*(a+b*
x))-sqrt(b)*sqrt(a+b*x))))

________________________________________________________________________________________

maple [B]  time = 0.24, size = 165, normalized size = 1.63 \[ \frac {\sqrt {x}\, \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}{2}+\frac {3 a \sqrt {x}\, \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{4}+\frac {3 \ln \left (\sqrt {b}\, \sqrt {x}+\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}\right ) a^{2}}{4 \sqrt {b}}+\frac {3 a \ln \left (\sqrt {b}\, \sqrt {x}+\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}\right ) \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )}{2 \sqrt {b}}+\frac {3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right ) \sqrt {x}\, \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{4}+\frac {3 \ln \left (\sqrt {b}\, \sqrt {x}+\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}\right ) \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}}{4 \sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(3/2)/x^(1/2),x)

[Out]

1/2*x^(1/2)*arctanh(tanh(b*x+a))^(3/2)+3/4*a*x^(1/2)*arctanh(tanh(b*x+a))^(1/2)+3/4/b^(1/2)*ln(b^(1/2)*x^(1/2)
+arctanh(tanh(b*x+a))^(1/2))*a^2+3/2*a/b^(1/2)*ln(b^(1/2)*x^(1/2)+arctanh(tanh(b*x+a))^(1/2))*(arctanh(tanh(b*
x+a))-b*x-a)+3/4*(arctanh(tanh(b*x+a))-b*x-a)*x^(1/2)*arctanh(tanh(b*x+a))^(1/2)+3/4/b^(1/2)*ln(b^(1/2)*x^(1/2
)+arctanh(tanh(b*x+a))^(1/2))*(arctanh(tanh(b*x+a))-b*x-a)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {3}{2}}}{\sqrt {x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^(1/2),x, algorithm="maxima")

[Out]

integrate(arctanh(tanh(b*x + a))^(3/2)/sqrt(x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {atanh}\left (\mathrm {tanh}\left (a+b\,x\right )\right )}^{3/2}}{\sqrt {x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^(3/2)/x^(1/2),x)

[Out]

int(atanh(tanh(a + b*x))^(3/2)/x^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atanh}^{\frac {3}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}{\sqrt {x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(3/2)/x**(1/2),x)

[Out]

Integral(atanh(tanh(a + b*x))**(3/2)/sqrt(x), x)

________________________________________________________________________________________