3.217 \(\int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {x}} \, dx\)

Optimal. Leaf size=61 \[ \sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}-\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{\sqrt {b}} \]

[Out]

-arctanh(b^(1/2)*x^(1/2)/arctanh(tanh(b*x+a))^(1/2))*(b*x-arctanh(tanh(b*x+a)))/b^(1/2)+x^(1/2)*arctanh(tanh(b
*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2169, 2165} \[ \sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}-\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{\sqrt {b}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[x],x]

[Out]

-((ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]]))/Sqrt[b]) + Sqrt[x]*
Sqrt[ArcTanh[Tanh[a + b*x]]]

Rule 2165

Int[1/(Sqrt[u_]*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTanh[(
Rt[a*b, 2]*Sqrt[u])/(a*Sqrt[v])])/Rt[a*b, 2], x] /; NeQ[b*u - a*v, 0] && PosQ[a*b]] /; PiecewiseLinearQ[u, v,
x]

Rule 2169

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + n + 1)), x] - Dist[(n*(b*u - a*v))/(a*(m + n + 1)), Int[u^m*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]]
 /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !In
tegerQ[n] || LtQ[0, m, n])) &&  !ILtQ[m + n, -2]

Rubi steps

\begin {align*} \int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {x}} \, dx &=\sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}-\frac {1}{2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \int \frac {1}{\sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{\sqrt {b}}+\sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 62, normalized size = 1.02 \[ \sqrt {x} \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {\left (\tanh ^{-1}(\tanh (a+b x))-b x\right ) \log \left (\sqrt {b} \sqrt {\tanh ^{-1}(\tanh (a+b x))}+b \sqrt {x}\right )}{\sqrt {b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[ArcTanh[Tanh[a + b*x]]] + ((-(b*x) + ArcTanh[Tanh[a + b*x]])*Log[b*Sqrt[x] + Sqrt[b]*Sqrt[ArcTanh
[Tanh[a + b*x]]]])/Sqrt[b]

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 93, normalized size = 1.52 \[ \left [\frac {a \sqrt {b} \log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right ) + 2 \, \sqrt {b x + a} b \sqrt {x}}{2 \, b}, -\frac {a \sqrt {-b} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right ) - \sqrt {b x + a} b \sqrt {x}}{b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

[1/2*(a*sqrt(b)*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) + 2*sqrt(b*x + a)*b*sqrt(x))/b, -(a*sqrt(-b)*
arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) - sqrt(b*x + a)*b*sqrt(x))/b]

________________________________________________________________________________________

giac [A]  time = 0.46, size = 36, normalized size = 0.59 \[ -\frac {a \log \left ({\left | -\sqrt {b} \sqrt {x} + \sqrt {b x + a} \right |}\right )}{\sqrt {b}} + \sqrt {b x + a} \sqrt {x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

-a*log(abs(-sqrt(b)*sqrt(x) + sqrt(b*x + a)))/sqrt(b) + sqrt(b*x + a)*sqrt(x)

________________________________________________________________________________________

maple [A]  time = 0.27, size = 75, normalized size = 1.23 \[ \sqrt {x}\, \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}+\frac {\ln \left (\sqrt {b}\, \sqrt {x}+\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}\right ) a}{\sqrt {b}}+\frac {\ln \left (\sqrt {b}\, \sqrt {x}+\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}\right ) \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )}{\sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(1/2)/x^(1/2),x)

[Out]

x^(1/2)*arctanh(tanh(b*x+a))^(1/2)+1/b^(1/2)*ln(b^(1/2)*x^(1/2)+arctanh(tanh(b*x+a))^(1/2))*a+1/b^(1/2)*ln(b^(
1/2)*x^(1/2)+arctanh(tanh(b*x+a))^(1/2))*(arctanh(tanh(b*x+a))-b*x-a)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )}}{\sqrt {x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(arctanh(tanh(b*x + a)))/sqrt(x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {\mathrm {atanh}\left (\mathrm {tanh}\left (a+b\,x\right )\right )}}{\sqrt {x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^(1/2)/x^(1/2),x)

[Out]

int(atanh(tanh(a + b*x))^(1/2)/x^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}}{\sqrt {x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(1/2)/x**(1/2),x)

[Out]

Integral(sqrt(atanh(tanh(a + b*x)))/sqrt(x), x)

________________________________________________________________________________________