3.207 \(\int \frac {x^{7/2}}{\tanh ^{-1}(\tanh (a+b x))^3} \, dx\)

Optimal. Leaf size=135 \[ -\frac {35 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}}{4 b^{9/2}}+\frac {35 \sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{4 b^4}-\frac {7 x^{5/2}}{4 b^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}+\frac {35 x^{3/2}}{12 b^3} \]

[Out]

35/12*x^(3/2)/b^3-35/4*arctanh(b^(1/2)*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))*(b*x-arctanh(tanh(b*x+a)))^(3
/2)/b^(9/2)-1/2*x^(7/2)/b/arctanh(tanh(b*x+a))^2-7/4*x^(5/2)/b^2/arctanh(tanh(b*x+a))+35/4*(b*x-arctanh(tanh(b
*x+a)))*x^(1/2)/b^4

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2168, 2159, 2162} \[ -\frac {7 x^{5/2}}{4 b^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {35 \sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{4 b^4}-\frac {35 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}}{4 b^{9/2}}-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}+\frac {35 x^{3/2}}{12 b^3} \]

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/ArcTanh[Tanh[a + b*x]]^3,x]

[Out]

(35*x^(3/2))/(12*b^3) + (35*Sqrt[x]*(b*x - ArcTanh[Tanh[a + b*x]]))/(4*b^4) - (35*ArcTanh[(Sqrt[b]*Sqrt[x])/Sq
rt[b*x - ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]])^(3/2))/(4*b^(9/2)) - x^(7/2)/(2*b*ArcTanh[Tan
h[a + b*x]]^2) - (7*x^(5/2))/(4*b^2*ArcTanh[Tanh[a + b*x]])

Rule 2159

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^n/(a*n), x] - Dis
t[(b*u - a*v)/a, Int[v^(n - 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && GtQ[n, 0] && Ne
Q[n, 1]

Rule 2162

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-2*ArcTanh[Sqrt
[v]/Rt[-((b*u - a*v)/a), 2]])/(a*Rt[-((b*u - a*v)/a), 2]), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /;
PiecewiseLinearQ[u, v, x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {x^{7/2}}{\tanh ^{-1}(\tanh (a+b x))^3} \, dx &=-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}+\frac {7 \int \frac {x^{5/2}}{\tanh ^{-1}(\tanh (a+b x))^2} \, dx}{4 b}\\ &=-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}-\frac {7 x^{5/2}}{4 b^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {35 \int \frac {x^{3/2}}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{8 b^2}\\ &=\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}-\frac {7 x^{5/2}}{4 b^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {\left (35 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )\right ) \int \frac {\sqrt {x}}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{8 b^3}\\ &=\frac {35 x^{3/2}}{12 b^3}+\frac {35 \sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{4 b^4}-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}-\frac {7 x^{5/2}}{4 b^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {\left (35 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2\right ) \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))} \, dx}{8 b^4}\\ &=\frac {35 x^{3/2}}{12 b^3}+\frac {35 \sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}{4 b^4}-\frac {35 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}}{4 b^{9/2}}-\frac {x^{7/2}}{2 b \tanh ^{-1}(\tanh (a+b x))^2}-\frac {7 x^{5/2}}{4 b^2 \tanh ^{-1}(\tanh (a+b x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 147, normalized size = 1.09 \[ -\frac {21 b^{5/2} x^{5/2} \tanh ^{-1}(\tanh (a+b x))-140 b^{3/2} x^{3/2} \tanh ^{-1}(\tanh (a+b x))^2+105 \sqrt {b} \sqrt {x} \tanh ^{-1}(\tanh (a+b x))^3-105 \tanh ^{-1}(\tanh (a+b x))^2 \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )+6 b^{7/2} x^{7/2}}{12 b^{9/2} \tanh ^{-1}(\tanh (a+b x))^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/ArcTanh[Tanh[a + b*x]]^3,x]

[Out]

-1/12*(6*b^(7/2)*x^(7/2) + 21*b^(5/2)*x^(5/2)*ArcTanh[Tanh[a + b*x]] - 140*b^(3/2)*x^(3/2)*ArcTanh[Tanh[a + b*
x]]^2 + 105*Sqrt[b]*Sqrt[x]*ArcTanh[Tanh[a + b*x]]^3 - 105*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[-(b*x) + ArcTanh[Tanh
[a + b*x]]]]*ArcTanh[Tanh[a + b*x]]^2*(-(b*x) + ArcTanh[Tanh[a + b*x]])^(3/2))/(b^(9/2)*ArcTanh[Tanh[a + b*x]]
^2)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 227, normalized size = 1.68 \[ \left [\frac {105 \, {\left (a b^{2} x^{2} + 2 \, a^{2} b x + a^{3}\right )} \sqrt {-\frac {a}{b}} \log \left (\frac {b x + 2 \, b \sqrt {x} \sqrt {-\frac {a}{b}} - a}{b x + a}\right ) + 2 \, {\left (8 \, b^{3} x^{3} - 56 \, a b^{2} x^{2} - 175 \, a^{2} b x - 105 \, a^{3}\right )} \sqrt {x}}{24 \, {\left (b^{6} x^{2} + 2 \, a b^{5} x + a^{2} b^{4}\right )}}, \frac {105 \, {\left (a b^{2} x^{2} + 2 \, a^{2} b x + a^{3}\right )} \sqrt {\frac {a}{b}} \arctan \left (\frac {b \sqrt {x} \sqrt {\frac {a}{b}}}{a}\right ) + {\left (8 \, b^{3} x^{3} - 56 \, a b^{2} x^{2} - 175 \, a^{2} b x - 105 \, a^{3}\right )} \sqrt {x}}{12 \, {\left (b^{6} x^{2} + 2 \, a b^{5} x + a^{2} b^{4}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/arctanh(tanh(b*x+a))^3,x, algorithm="fricas")

[Out]

[1/24*(105*(a*b^2*x^2 + 2*a^2*b*x + a^3)*sqrt(-a/b)*log((b*x + 2*b*sqrt(x)*sqrt(-a/b) - a)/(b*x + a)) + 2*(8*b
^3*x^3 - 56*a*b^2*x^2 - 175*a^2*b*x - 105*a^3)*sqrt(x))/(b^6*x^2 + 2*a*b^5*x + a^2*b^4), 1/12*(105*(a*b^2*x^2
+ 2*a^2*b*x + a^3)*sqrt(a/b)*arctan(b*sqrt(x)*sqrt(a/b)/a) + (8*b^3*x^3 - 56*a*b^2*x^2 - 175*a^2*b*x - 105*a^3
)*sqrt(x))/(b^6*x^2 + 2*a*b^5*x + a^2*b^4)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 77, normalized size = 0.57 \[ \frac {35 \, a^{2} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} b^{4}} - \frac {13 \, a^{2} b x^{\frac {3}{2}} + 11 \, a^{3} \sqrt {x}}{4 \, {\left (b x + a\right )}^{2} b^{4}} + \frac {2 \, {\left (b^{6} x^{\frac {3}{2}} - 9 \, a b^{5} \sqrt {x}\right )}}{3 \, b^{9}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/arctanh(tanh(b*x+a))^3,x, algorithm="giac")

[Out]

35/4*a^2*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^4) - 1/4*(13*a^2*b*x^(3/2) + 11*a^3*sqrt(x))/((b*x + a)^2*b^
4) + 2/3*(b^6*x^(3/2) - 9*a*b^5*sqrt(x))/b^9

________________________________________________________________________________________

maple [B]  time = 0.27, size = 418, normalized size = 3.10 \[ \frac {2 x^{\frac {3}{2}}}{3 b^{3}}-\frac {6 a \sqrt {x}}{b^{4}}-\frac {6 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right ) \sqrt {x}}{b^{4}}-\frac {13 a^{2} x^{\frac {3}{2}}}{4 b^{3} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}-\frac {13 x^{\frac {3}{2}} a \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )}{2 b^{3} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}-\frac {13 x^{\frac {3}{2}} \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}}{4 b^{3} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}-\frac {11 \sqrt {x}\, a^{3}}{4 b^{4} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}-\frac {33 \sqrt {x}\, a^{2} \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )}{4 b^{4} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}-\frac {33 \sqrt {x}\, a \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}}{4 b^{4} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}-\frac {11 \sqrt {x}\, \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{3}}{4 b^{4} \arctanh \left (\tanh \left (b x +a \right )\right )^{2}}+\frac {35 \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right ) a^{2}}{4 b^{4} \sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}+\frac {35 \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right ) a \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )}{2 b^{4} \sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}+\frac {35 \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right ) \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}}{4 b^{4} \sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/arctanh(tanh(b*x+a))^3,x)

[Out]

2/3*x^(3/2)/b^3-6/b^4*a*x^(1/2)-6/b^4*(arctanh(tanh(b*x+a))-b*x-a)*x^(1/2)-13/4/b^3/arctanh(tanh(b*x+a))^2*a^2
*x^(3/2)-13/2/b^3/arctanh(tanh(b*x+a))^2*x^(3/2)*a*(arctanh(tanh(b*x+a))-b*x-a)-13/4/b^3/arctanh(tanh(b*x+a))^
2*x^(3/2)*(arctanh(tanh(b*x+a))-b*x-a)^2-11/4/b^4/arctanh(tanh(b*x+a))^2*x^(1/2)*a^3-33/4/b^4/arctanh(tanh(b*x
+a))^2*x^(1/2)*a^2*(arctanh(tanh(b*x+a))-b*x-a)-33/4/b^4/arctanh(tanh(b*x+a))^2*x^(1/2)*a*(arctanh(tanh(b*x+a)
)-b*x-a)^2-11/4/b^4/arctanh(tanh(b*x+a))^2*x^(1/2)*(arctanh(tanh(b*x+a))-b*x-a)^3+35/4/b^4/((arctanh(tanh(b*x+
a))-b*x)*b)^(1/2)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2))*a^2+35/2/b^4/((arctanh(tanh(b*x+a))-b
*x)*b)^(1/2)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2))*a*(arctanh(tanh(b*x+a))-b*x-a)+35/4/b^4/((
arctanh(tanh(b*x+a))-b*x)*b)^(1/2)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2))*(arctanh(tanh(b*x+a)
)-b*x-a)^2

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 86, normalized size = 0.64 \[ \frac {8 \, b^{3} x^{\frac {7}{2}} - 56 \, a b^{2} x^{\frac {5}{2}} - 175 \, a^{2} b x^{\frac {3}{2}} - 105 \, a^{3} \sqrt {x}}{12 \, {\left (b^{6} x^{2} + 2 \, a b^{5} x + a^{2} b^{4}\right )}} + \frac {35 \, a^{2} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} b^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/arctanh(tanh(b*x+a))^3,x, algorithm="maxima")

[Out]

1/12*(8*b^3*x^(7/2) - 56*a*b^2*x^(5/2) - 175*a^2*b*x^(3/2) - 105*a^3*sqrt(x))/(b^6*x^2 + 2*a*b^5*x + a^2*b^4)
+ 35/4*a^2*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^4)

________________________________________________________________________________________

mupad [B]  time = 1.98, size = 571, normalized size = 4.23 \[ \frac {2\,x^{3/2}}{3\,b^3}+\frac {3\,\sqrt {x}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}{b^4}+\frac {35\,\sqrt {2}\,\ln \left (\frac {256\,b^{19/2}\,\left (\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )-4\,\sqrt {b}\,\sqrt {x}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}+2\,\sqrt {2}\,b\,x\right )}{\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}}\right )\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^{3/2}}{32\,b^{9/2}}-\frac {13\,\sqrt {x}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{8\,b^4\,\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}-\frac {\sqrt {x}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3}{4\,b^4\,{\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/atanh(tanh(a + b*x))^3,x)

[Out]

(2*x^(3/2))/(3*b^3) + (3*x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp
(2*b*x) + 1)) + 2*b*x))/b^4 + (35*2^(1/2)*log((256*b^(19/2)*(2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((
2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) - 4*b^(1/2)*x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1
)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2) + 2*2^(1/2)*b*x))/((log((2*exp(2*a)
*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))*(log(2/(exp(2*a)*exp(2*b*x) + 1))
- log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) -
log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(3/2))/(32*b^(9/2)) - (13*x^(1/2)*(log(2/(exp(
2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2)/(8*b^4*(log((2*exp(
2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))) - (x^(1/2)*(log(2/(exp(2*a)*e
xp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3)/(4*b^4*(log((2*exp(2*a)*e
xp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))^2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/atanh(tanh(b*x+a))**3,x)

[Out]

Timed out

________________________________________________________________________________________