3.204 \(\int \frac {1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))^2} \, dx\)

Optimal. Leaf size=120 \[ -\frac {1}{b x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac {1}{b x^{3/2} \tanh ^{-1}(\tanh (a+b x))}+\frac {3 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}-\frac {3}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2} \]

[Out]

-1/b/x^(3/2)/(b*x-arctanh(tanh(b*x+a)))-1/b/x^(3/2)/arctanh(tanh(b*x+a))+3*arctanh(b^(1/2)*x^(1/2)/(b*x-arctan
h(tanh(b*x+a)))^(1/2))*b^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(5/2)-3/(b*x-arctanh(tanh(b*x+a)))^2/x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2168, 2163, 2162} \[ -\frac {1}{b x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac {1}{b x^{3/2} \tanh ^{-1}(\tanh (a+b x))}+\frac {3 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}-\frac {3}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(3/2)*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

(3*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(5/2)
 - 3/(Sqrt[x]*(b*x - ArcTanh[Tanh[a + b*x]])^2) - 1/(b*x^(3/2)*(b*x - ArcTanh[Tanh[a + b*x]])) - 1/(b*x^(3/2)*
ArcTanh[Tanh[a + b*x]])

Rule 2162

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-2*ArcTanh[Sqrt
[v]/Rt[-((b*u - a*v)/a), 2]])/(a*Rt[-((b*u - a*v)/a), 2]), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /;
PiecewiseLinearQ[u, v, x]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))^2} \, dx &=-\frac {1}{b x^{3/2} \tanh ^{-1}(\tanh (a+b x))}-\frac {3 \int \frac {1}{x^{5/2} \tanh ^{-1}(\tanh (a+b x))} \, dx}{2 b}\\ &=-\frac {1}{b x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac {1}{b x^{3/2} \tanh ^{-1}(\tanh (a+b x))}+\frac {3 \int \frac {1}{x^{3/2} \tanh ^{-1}(\tanh (a+b x))} \, dx}{2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {3}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac {1}{b x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac {1}{b x^{3/2} \tanh ^{-1}(\tanh (a+b x))}+\frac {(3 b) \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac {3 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{5/2}}-\frac {3}{\sqrt {x} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac {1}{b x^{3/2} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}-\frac {1}{b x^{3/2} \tanh ^{-1}(\tanh (a+b x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 104, normalized size = 0.87 \[ -\frac {b \sqrt {x}}{\tanh ^{-1}(\tanh (a+b x)) \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2}-\frac {2}{\sqrt {x} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2}-\frac {3 \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(3/2)*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

(-3*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(-(b*x) + ArcTanh[Tanh[a + b*x]])
^(5/2) - 2/(Sqrt[x]*(-(b*x) + ArcTanh[Tanh[a + b*x]])^2) - (b*Sqrt[x])/(ArcTanh[Tanh[a + b*x]]*(-(b*x) + ArcTa
nh[Tanh[a + b*x]])^2)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 147, normalized size = 1.22 \[ \left [\frac {3 \, {\left (b x^{2} + a x\right )} \sqrt {-\frac {b}{a}} \log \left (\frac {b x - 2 \, a \sqrt {x} \sqrt {-\frac {b}{a}} - a}{b x + a}\right ) - 2 \, {\left (3 \, b x + 2 \, a\right )} \sqrt {x}}{2 \, {\left (a^{2} b x^{2} + a^{3} x\right )}}, \frac {3 \, {\left (b x^{2} + a x\right )} \sqrt {\frac {b}{a}} \arctan \left (\frac {a \sqrt {\frac {b}{a}}}{b \sqrt {x}}\right ) - {\left (3 \, b x + 2 \, a\right )} \sqrt {x}}{a^{2} b x^{2} + a^{3} x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/arctanh(tanh(b*x+a))^2,x, algorithm="fricas")

[Out]

[1/2*(3*(b*x^2 + a*x)*sqrt(-b/a)*log((b*x - 2*a*sqrt(x)*sqrt(-b/a) - a)/(b*x + a)) - 2*(3*b*x + 2*a)*sqrt(x))/
(a^2*b*x^2 + a^3*x), (3*(b*x^2 + a*x)*sqrt(b/a)*arctan(a*sqrt(b/a)/(b*sqrt(x))) - (3*b*x + 2*a)*sqrt(x))/(a^2*
b*x^2 + a^3*x)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 49, normalized size = 0.41 \[ -\frac {3 \, b \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b} a^{2}} - \frac {3 \, b x + 2 \, a}{{\left (b x^{\frac {3}{2}} + a \sqrt {x}\right )} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/arctanh(tanh(b*x+a))^2,x, algorithm="giac")

[Out]

-3*b*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a^2) - (3*b*x + 2*a)/((b*x^(3/2) + a*sqrt(x))*a^2)

________________________________________________________________________________________

maple [A]  time = 0.28, size = 105, normalized size = 0.88 \[ -\frac {2}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \sqrt {x}}-\frac {b \sqrt {x}}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \arctanh \left (\tanh \left (b x +a \right )\right )}-\frac {3 b \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(3/2)/arctanh(tanh(b*x+a))^2,x)

[Out]

-2/(arctanh(tanh(b*x+a))-b*x)^2/x^(1/2)-1/(arctanh(tanh(b*x+a))-b*x)^2*b*x^(1/2)/arctanh(tanh(b*x+a))-3/(arcta
nh(tanh(b*x+a))-b*x)^2*b/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a))-b*x)*b)^
(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 51, normalized size = 0.42 \[ -\frac {3 \, b x + 2 \, a}{a^{2} b x^{\frac {3}{2}} + a^{3} \sqrt {x}} - \frac {3 \, b \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/arctanh(tanh(b*x+a))^2,x, algorithm="maxima")

[Out]

-(3*b*x + 2*a)/(a^2*b*x^(3/2) + a^3*sqrt(x)) - 3*b*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a^2)

________________________________________________________________________________________

mupad [B]  time = 1.83, size = 705, normalized size = 5.88 \[ \frac {\sqrt {x}\,\left (\frac {8}{\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}-\frac {24\,b\,x}{{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}\right )}{2\,b\,x^2-x\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}+\frac {6\,\sqrt {2}\,\sqrt {b}\,\ln \left (-\frac {\sqrt {b}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,\left (\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+4\,\sqrt {b}\,\sqrt {x}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}+2\,\sqrt {2}\,b\,x\right )\,\left ({\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^4+24\,a^2\,{\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2+16\,a^4-8\,a\,{\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3-32\,a^3\,\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )\right )}{2\,\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}\right )}{{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(3/2)*atanh(tanh(a + b*x))^2),x)

[Out]

(x^(1/2)*(8/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x
) - (24*b*x)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*
x)^2))/(2*b*x^2 - x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))
 + 2*b*x)) + (6*2^(1/2)*b^(1/2)*log(-(b^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/
(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*(2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b
*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) + 4*b^(1/2)*x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*
a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2) + 2*2^(1/2)*b*x)*((2*a - log((2*exp(2*a)*exp(2*b*x))/
(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^4 + 24*a^2*(2*a - log((2*exp(2*a)*exp(2
*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2 + 16*a^4 - 8*a*(2*a - log((2*e
xp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3 - 32*a^3*(2*a - l
og((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)))/(2*(log((2
*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1))))))/(log(2/(exp(2*a)*exp(2
*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(5/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{\frac {3}{2}} \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(3/2)/atanh(tanh(b*x+a))**2,x)

[Out]

Integral(1/(x**(3/2)*atanh(tanh(a + b*x))**2), x)

________________________________________________________________________________________