3.195 \(\int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))} \, dx\)

Optimal. Leaf size=53 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\sqrt {b} \sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}} \]

[Out]

-2*arctanh(b^(1/2)*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/b^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2162} \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\sqrt {b} \sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*ArcTanh[Tanh[a + b*x]]),x]

[Out]

(-2*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(Sqrt[b]*Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]
)

Rule 2162

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-2*ArcTanh[Sqrt
[v]/Rt[-((b*u - a*v)/a), 2]])/(a*Rt[-((b*u - a*v)/a), 2]), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /;
PiecewiseLinearQ[u, v, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \tanh ^{-1}(\tanh (a+b x))} \, dx &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\sqrt {b} \sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 51, normalized size = 0.96 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\sqrt {b} \sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*ArcTanh[Tanh[a + b*x]]),x]

[Out]

(2*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(Sqrt[b]*Sqrt[-(b*x) + ArcTanh[Tanh[a + b*
x]]])

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 68, normalized size = 1.28 \[ \left [-\frac {\sqrt {-a b} \log \left (\frac {b x - a - 2 \, \sqrt {-a b} \sqrt {x}}{b x + a}\right )}{a b}, -\frac {2 \, \sqrt {a b} \arctan \left (\frac {\sqrt {a b}}{b \sqrt {x}}\right )}{a b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arctanh(tanh(b*x+a))/x^(1/2),x, algorithm="fricas")

[Out]

[-sqrt(-a*b)*log((b*x - a - 2*sqrt(-a*b)*sqrt(x))/(b*x + a))/(a*b), -2*sqrt(a*b)*arctan(sqrt(a*b)/(b*sqrt(x)))
/(a*b)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 18, normalized size = 0.34 \[ \frac {2 \, \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arctanh(tanh(b*x+a))/x^(1/2),x, algorithm="giac")

[Out]

2*arctan(b*sqrt(x)/sqrt(a*b))/sqrt(a*b)

________________________________________________________________________________________

maple [A]  time = 0.26, size = 41, normalized size = 0.77 \[ \frac {2 \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right )}{\sqrt {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/arctanh(tanh(b*x+a))/x^(1/2),x)

[Out]

2/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 18, normalized size = 0.34 \[ \frac {2 \, \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/arctanh(tanh(b*x+a))/x^(1/2),x, algorithm="maxima")

[Out]

2*arctan(b*sqrt(x)/sqrt(a*b))/sqrt(a*b)

________________________________________________________________________________________

mupad [B]  time = 4.01, size = 347, normalized size = 6.55 \[ \frac {\sqrt {2}\,\ln \left (\frac {b^2\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )\,\left (2\,\sqrt {2}\,a+4\,\sqrt {x}\,\sqrt {b\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}-\sqrt {2}\,\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )-2\,\sqrt {2}\,b\,x\right )}{2\,\sqrt {b\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}\,\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}\right )}{\sqrt {b\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-b\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b^2\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*atanh(tanh(a + b*x))),x)

[Out]

(2^(1/2)*log((b^2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) +
 2*b*x)*(2*2^(1/2)*a + 4*x^(1/2)*(b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*
exp(2*b*x) + 1)) + 2*b*x))^(1/2) - 2^(1/2)*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log
(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) - 2*2^(1/2)*b*x))/(2*(b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(
2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))^(1/2)*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x)
+ 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1))))))/(b*log(1/(exp(2*a)*exp(2*b*x) + 1)) - b*log((exp(2*a)*exp(2*b*x))
/(exp(2*a)*exp(2*b*x) + 1)) + 2*b^2*x)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x} \operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/atanh(tanh(b*x+a))/x**(1/2),x)

[Out]

Integral(1/(sqrt(x)*atanh(tanh(a + b*x))), x)

________________________________________________________________________________________