3.19 \(\int \frac {\tanh ^{-1}(\frac {\sqrt {e} x}{\sqrt {d+e x^2}})}{x^{3/2}} \, dx\)

Optimal. Leaf size=113 \[ \frac {2 \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{d} \sqrt {d+e x^2}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \]

[Out]

-2*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(1/2)+2*e^(1/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2
*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(d^(1/2)+x*e^(
1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/d^(1/4)/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6221, 329, 220} \[ \frac {2 \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{d} \sqrt {d+e x^2}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^(3/2),x]

[Out]

(-2*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + (2*e^(1/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d]
 + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(d^(1/4)*Sqrt[d + e*x^2])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 6221

Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*ArcT
anh[(c*x)/Sqrt[a + b*x^2]])/(d*(m + 1)), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
 FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{x^{3/2}} \, dx &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\left (2 \sqrt {e}\right ) \int \frac {1}{\sqrt {x} \sqrt {d+e x^2}} \, dx\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\left (4 \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\frac {2 \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{d} \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.13, size = 111, normalized size = 0.98 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\frac {4 i \sqrt {e} x \sqrt {\frac {d}{e x^2}+1} F\left (\left .i \sinh ^{-1}\left (\frac {\sqrt {\frac {i \sqrt {d}}{\sqrt {e}}}}{\sqrt {x}}\right )\right |-1\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {e}}} \sqrt {d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^(3/2),x]

[Out]

(-2*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + ((4*I)*Sqrt[e]*Sqrt[1 + d/(e*x^2)]*x*EllipticF[I*ArcSinh[S
qrt[(I*Sqrt[d])/Sqrt[e]]/Sqrt[x]], -1])/(Sqrt[(I*Sqrt[d])/Sqrt[e]]*Sqrt[d + e*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\operatorname {artanh}\left (\frac {\sqrt {e} x}{\sqrt {e x^{2} + d}}\right )}{x^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="fricas")

[Out]

integral(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {artanh}\left (\frac {\sqrt {e} x}{\sqrt {e x^{2} + d}}\right )}{x^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="giac")

[Out]

integrate(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x^(3/2), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {\arctanh \left (\frac {x \sqrt {e}}{\sqrt {e \,x^{2}+d}}\right )}{x^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x)

[Out]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ 2 \, d \sqrt {e} \int -\frac {\sqrt {e x^{2} + d} x}{{\left (e^{2} x^{4} + d e x^{2}\right )} x^{\frac {3}{2}} - {\left (e x^{2} + d\right )} e^{\left (\log \left (e x^{2} + d\right ) + \frac {3}{2} \, \log \relax (x)\right )}}\,{d x} - \frac {\log \left (\sqrt {e} x + \sqrt {e x^{2} + d}\right )}{\sqrt {x}} + \frac {\log \left (-\sqrt {e} x + \sqrt {e x^{2} + d}\right )}{\sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="maxima")

[Out]

2*d*sqrt(e)*integrate(-sqrt(e*x^2 + d)*x/((e^2*x^4 + d*e*x^2)*x^(3/2) - (e*x^2 + d)*e^(log(e*x^2 + d) + 3/2*lo
g(x))), x) - log(sqrt(e)*x + sqrt(e*x^2 + d))/sqrt(x) + log(-sqrt(e)*x + sqrt(e*x^2 + d))/sqrt(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\mathrm {atanh}\left (\frac {\sqrt {e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^(3/2),x)

[Out]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atanh}{\left (\frac {\sqrt {e} x}{\sqrt {d + e x^{2}}} \right )}}{x^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(x*e**(1/2)/(e*x**2+d)**(1/2))/x**(3/2),x)

[Out]

Integral(atanh(sqrt(e)*x/sqrt(d + e*x**2))/x**(3/2), x)

________________________________________________________________________________________