3.189 \(\int \frac {\tanh ^{-1}(\tanh (a+b x))^3}{x^{5/2}} \, dx\)

Optimal. Leaf size=65 \[ 16 b^2 \sqrt {x} \tanh ^{-1}(\tanh (a+b x))-\frac {2 \tanh ^{-1}(\tanh (a+b x))^3}{3 x^{3/2}}-\frac {4 b \tanh ^{-1}(\tanh (a+b x))^2}{\sqrt {x}}-\frac {32}{3} b^3 x^{3/2} \]

[Out]

-32/3*b^3*x^(3/2)-2/3*arctanh(tanh(b*x+a))^3/x^(3/2)-4*b*arctanh(tanh(b*x+a))^2/x^(1/2)+16*b^2*arctanh(tanh(b*
x+a))*x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2168, 30} \[ 16 b^2 \sqrt {x} \tanh ^{-1}(\tanh (a+b x))-\frac {2 \tanh ^{-1}(\tanh (a+b x))^3}{3 x^{3/2}}-\frac {4 b \tanh ^{-1}(\tanh (a+b x))^2}{\sqrt {x}}-\frac {32}{3} b^3 x^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^3/x^(5/2),x]

[Out]

(-32*b^3*x^(3/2))/3 + 16*b^2*Sqrt[x]*ArcTanh[Tanh[a + b*x]] - (4*b*ArcTanh[Tanh[a + b*x]]^2)/Sqrt[x] - (2*ArcT
anh[Tanh[a + b*x]]^3)/(3*x^(3/2))

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\tanh (a+b x))^3}{x^{5/2}} \, dx &=-\frac {2 \tanh ^{-1}(\tanh (a+b x))^3}{3 x^{3/2}}+(2 b) \int \frac {\tanh ^{-1}(\tanh (a+b x))^2}{x^{3/2}} \, dx\\ &=-\frac {4 b \tanh ^{-1}(\tanh (a+b x))^2}{\sqrt {x}}-\frac {2 \tanh ^{-1}(\tanh (a+b x))^3}{3 x^{3/2}}+\left (8 b^2\right ) \int \frac {\tanh ^{-1}(\tanh (a+b x))}{\sqrt {x}} \, dx\\ &=16 b^2 \sqrt {x} \tanh ^{-1}(\tanh (a+b x))-\frac {4 b \tanh ^{-1}(\tanh (a+b x))^2}{\sqrt {x}}-\frac {2 \tanh ^{-1}(\tanh (a+b x))^3}{3 x^{3/2}}-\left (16 b^3\right ) \int \sqrt {x} \, dx\\ &=-\frac {32}{3} b^3 x^{3/2}+16 b^2 \sqrt {x} \tanh ^{-1}(\tanh (a+b x))-\frac {4 b \tanh ^{-1}(\tanh (a+b x))^2}{\sqrt {x}}-\frac {2 \tanh ^{-1}(\tanh (a+b x))^3}{3 x^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 55, normalized size = 0.85 \[ -\frac {2 \left (-24 b^2 x^2 \tanh ^{-1}(\tanh (a+b x))+6 b x \tanh ^{-1}(\tanh (a+b x))^2+\tanh ^{-1}(\tanh (a+b x))^3+16 b^3 x^3\right )}{3 x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^3/x^(5/2),x]

[Out]

(-2*(16*b^3*x^3 - 24*b^2*x^2*ArcTanh[Tanh[a + b*x]] + 6*b*x*ArcTanh[Tanh[a + b*x]]^2 + ArcTanh[Tanh[a + b*x]]^
3))/(3*x^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 34, normalized size = 0.52 \[ \frac {2 \, {\left (b^{3} x^{3} + 9 \, a b^{2} x^{2} - 9 \, a^{2} b x - a^{3}\right )}}{3 \, x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^3/x^(5/2),x, algorithm="fricas")

[Out]

2/3*(b^3*x^3 + 9*a*b^2*x^2 - 9*a^2*b*x - a^3)/x^(3/2)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 34, normalized size = 0.52 \[ \frac {2}{3} \, b^{3} x^{\frac {3}{2}} + 6 \, a b^{2} \sqrt {x} - \frac {2 \, {\left (9 \, a^{2} b x + a^{3}\right )}}{3 \, x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^3/x^(5/2),x, algorithm="giac")

[Out]

2/3*b^3*x^(3/2) + 6*a*b^2*sqrt(x) - 2/3*(9*a^2*b*x + a^3)/x^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.26, size = 55, normalized size = 0.85 \[ -\frac {2 \arctanh \left (\tanh \left (b x +a \right )\right )^{3}}{3 x^{\frac {3}{2}}}+4 b \left (-\frac {\arctanh \left (\tanh \left (b x +a \right )\right )^{2}}{\sqrt {x}}+4 b \left (\arctanh \left (\tanh \left (b x +a \right )\right ) \sqrt {x}-\frac {2 b \,x^{\frac {3}{2}}}{3}\right )\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^3/x^(5/2),x)

[Out]

-2/3*arctanh(tanh(b*x+a))^3/x^(3/2)+4*b*(-arctanh(tanh(b*x+a))^2/x^(1/2)+4*b*(arctanh(tanh(b*x+a))*x^(1/2)-2/3
*b*x^(3/2)))

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 55, normalized size = 0.85 \[ -\frac {4 \, b \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{2}}{\sqrt {x}} - \frac {16}{3} \, {\left (2 \, b^{2} x^{\frac {3}{2}} - 3 \, b \sqrt {x} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )\right )} b - \frac {2 \, \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{3}}{3 \, x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^3/x^(5/2),x, algorithm="maxima")

[Out]

-4*b*arctanh(tanh(b*x + a))^2/sqrt(x) - 16/3*(2*b^2*x^(3/2) - 3*b*sqrt(x)*arctanh(tanh(b*x + a)))*b - 2/3*arct
anh(tanh(b*x + a))^3/x^(3/2)

________________________________________________________________________________________

mupad [B]  time = 1.22, size = 182, normalized size = 2.80 \[ \frac {{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3}{12\,x^{3/2}}+\frac {2\,b^3\,x^{3/2}}{3}-\frac {3\,b\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{2\,\sqrt {x}}-3\,b^2\,\sqrt {x}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^3/x^(5/2),x)

[Out]

(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3/(12*x^(3
/2)) + (2*b^3*x^(3/2))/3 - (3*b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(
2*b*x) + 1)) + 2*b*x)^2)/(2*x^(1/2)) - 3*b^2*x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2
*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)

________________________________________________________________________________________

sympy [A]  time = 10.58, size = 66, normalized size = 1.02 \[ - \frac {32 b^{3} x^{\frac {3}{2}}}{3} + 16 b^{2} \sqrt {x} \operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )} - \frac {4 b \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{\sqrt {x}} - \frac {2 \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}{3 x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**3/x**(5/2),x)

[Out]

-32*b**3*x**(3/2)/3 + 16*b**2*sqrt(x)*atanh(tanh(a + b*x)) - 4*b*atanh(tanh(a + b*x))**2/sqrt(x) - 2*atanh(tan
h(a + b*x))**3/(3*x**(3/2))

________________________________________________________________________________________