3.142 \(\int \frac {x^2}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\)

Optimal. Leaf size=57 \[ \frac {16 \tanh ^{-1}(\tanh (a+b x))^{5/2}}{15 b^3}-\frac {8 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b^2}+\frac {2 x^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{b} \]

[Out]

-8/3*x*arctanh(tanh(b*x+a))^(3/2)/b^2+16/15*arctanh(tanh(b*x+a))^(5/2)/b^3+2*x^2*arctanh(tanh(b*x+a))^(1/2)/b

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2168, 2157, 30} \[ \frac {16 \tanh ^{-1}(\tanh (a+b x))^{5/2}}{15 b^3}-\frac {8 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b^2}+\frac {2 x^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{b} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[ArcTanh[Tanh[a + b*x]]],x]

[Out]

(2*x^2*Sqrt[ArcTanh[Tanh[a + b*x]]])/b - (8*x*ArcTanh[Tanh[a + b*x]]^(3/2))/(3*b^2) + (16*ArcTanh[Tanh[a + b*x
]]^(5/2))/(15*b^3)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx &=\frac {2 x^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{b}-\frac {4 \int x \sqrt {\tanh ^{-1}(\tanh (a+b x))} \, dx}{b}\\ &=\frac {2 x^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{b}-\frac {8 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b^2}+\frac {8 \int \tanh ^{-1}(\tanh (a+b x))^{3/2} \, dx}{3 b^2}\\ &=\frac {2 x^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{b}-\frac {8 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b^2}+\frac {8 \operatorname {Subst}\left (\int x^{3/2} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{3 b^3}\\ &=\frac {2 x^2 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{b}-\frac {8 x \tanh ^{-1}(\tanh (a+b x))^{3/2}}{3 b^2}+\frac {16 \tanh ^{-1}(\tanh (a+b x))^{5/2}}{15 b^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 49, normalized size = 0.86 \[ \frac {2 \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (-20 b x \tanh ^{-1}(\tanh (a+b x))+8 \tanh ^{-1}(\tanh (a+b x))^2+15 b^2 x^2\right )}{15 b^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[ArcTanh[Tanh[a + b*x]]],x]

[Out]

(2*Sqrt[ArcTanh[Tanh[a + b*x]]]*(15*b^2*x^2 - 20*b*x*ArcTanh[Tanh[a + b*x]] + 8*ArcTanh[Tanh[a + b*x]]^2))/(15
*b^3)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 31, normalized size = 0.54 \[ \frac {2 \, {\left (3 \, b^{2} x^{2} - 4 \, a b x + 8 \, a^{2}\right )} \sqrt {b x + a}}{15 \, b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arctanh(tanh(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*b^2*x^2 - 4*a*b*x + 8*a^2)*sqrt(b*x + a)/b^3

________________________________________________________________________________________

giac [A]  time = 0.16, size = 37, normalized size = 0.65 \[ \frac {2 \, {\left (3 \, {\left (b x + a\right )}^{\frac {5}{2}} - 10 \, {\left (b x + a\right )}^{\frac {3}{2}} a + 15 \, \sqrt {b x + a} a^{2}\right )}}{15 \, b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arctanh(tanh(b*x+a))^(1/2),x, algorithm="giac")

[Out]

2/15*(3*(b*x + a)^(5/2) - 10*(b*x + a)^(3/2)*a + 15*sqrt(b*x + a)*a^2)/b^3

________________________________________________________________________________________

maple [A]  time = 0.17, size = 68, normalized size = 1.19 \[ \frac {\frac {2 \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {5}{2}}}{5}+\frac {2 \left (-2 \arctanh \left (\tanh \left (b x +a \right )\right )+2 b x \right ) \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}{3}+2 \left (b x -\arctanh \left (\tanh \left (b x +a \right )\right )\right )^{2} \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/arctanh(tanh(b*x+a))^(1/2),x)

[Out]

2/b^3*(1/5*arctanh(tanh(b*x+a))^(5/2)+1/3*(-2*arctanh(tanh(b*x+a))+2*b*x)*arctanh(tanh(b*x+a))^(3/2)+(b*x-arct
anh(tanh(b*x+a)))^2*arctanh(tanh(b*x+a))^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 42, normalized size = 0.74 \[ \frac {2 \, {\left (3 \, b^{3} x^{3} - a b^{2} x^{2} + 4 \, a^{2} b x + 8 \, a^{3}\right )}}{15 \, \sqrt {b x + a} b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arctanh(tanh(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

2/15*(3*b^3*x^3 - a*b^2*x^2 + 4*a^2*b*x + 8*a^3)/(sqrt(b*x + a)*b^3)

________________________________________________________________________________________

mupad [B]  time = 1.14, size = 211, normalized size = 3.70 \[ \frac {2\,\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\left (15\,b^2\,x^2-10\,b\,x\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+10\,b\,x\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,{\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2-4\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,{\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2\right )}{15\,b^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/atanh(tanh(a + b*x))^(1/2),x)

[Out]

(2*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(2*lo
g(2/(exp(2*a)*exp(2*b*x) + 1))^2 - 4*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*log(2/(exp(2*a)*ex
p(2*b*x) + 1)) + 2*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^2 + 15*b^2*x^2 - 10*b*x*log((2*exp(2
*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 10*b*x*log(2/(exp(2*a)*exp(2*b*x) + 1))))/(15*b^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {\operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/atanh(tanh(b*x+a))**(1/2),x)

[Out]

Integral(x**2/sqrt(atanh(tanh(a + b*x))), x)

________________________________________________________________________________________