3.135 \(\int \frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x^2} \, dx\)

Optimal. Leaf size=110 \[ -\frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x}+\frac {5}{3} b \tanh ^{-1}(\tanh (a+b x))^{3/2}-5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \]

[Out]

5*b*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))*(b*x-arctanh(tanh(b*x+a)))^(3/2)+5/3*b
*arctanh(tanh(b*x+a))^(3/2)-arctanh(tanh(b*x+a))^(5/2)/x-5*b*(b*x-arctanh(tanh(b*x+a)))*arctanh(tanh(b*x+a))^(
1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2168, 2159, 2161} \[ -\frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x}+\frac {5}{3} b \tanh ^{-1}(\tanh (a+b x))^{3/2}-5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^(5/2)/x^2,x]

[Out]

5*b*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]])^(3/
2) - 5*b*(b*x - ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]] + (5*b*ArcTanh[Tanh[a + b*x]]^(3/2))/3 -
ArcTanh[Tanh[a + b*x]]^(5/2)/x

Rule 2159

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^n/(a*n), x] - Dis
t[(b*u - a*v)/a, Int[v^(n - 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && GtQ[n, 0] && Ne
Q[n, 1]

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x^2} \, dx &=-\frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x}+\frac {1}{2} (5 b) \int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x} \, dx\\ &=\frac {5}{3} b \tanh ^{-1}(\tanh (a+b x))^{3/2}-\frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x}-\frac {1}{2} \left (5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )\right ) \int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x} \, dx\\ &=-5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {5}{3} b \tanh ^{-1}(\tanh (a+b x))^{3/2}-\frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x}+\frac {1}{2} \left (5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2\right ) \int \frac {1}{x \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=5 b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}-5 b \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {5}{3} b \tanh ^{-1}(\tanh (a+b x))^{3/2}-\frac {\tanh ^{-1}(\tanh (a+b x))^{5/2}}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 106, normalized size = 0.96 \[ \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (\frac {14}{3} b \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )-\frac {\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^2}{x}+\frac {2 b^2 x}{3}\right )-5 b \tanh ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right ) \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{3/2} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^(5/2)/x^2,x]

[Out]

-5*b*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]]*(-(b*x) + ArcTanh[Tanh[a + b*
x]])^(3/2) + Sqrt[ArcTanh[Tanh[a + b*x]]]*((2*b^2*x)/3 + (14*b*(-(b*x) + ArcTanh[Tanh[a + b*x]]))/3 - (-(b*x)
+ ArcTanh[Tanh[a + b*x]])^2/x)

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 126, normalized size = 1.15 \[ \left [\frac {15 \, a^{\frac {3}{2}} b x \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, {\left (2 \, b^{2} x^{2} + 14 \, a b x - 3 \, a^{2}\right )} \sqrt {b x + a}}{6 \, x}, \frac {15 \, \sqrt {-a} a b x \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (2 \, b^{2} x^{2} + 14 \, a b x - 3 \, a^{2}\right )} \sqrt {b x + a}}{3 \, x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(5/2)/x^2,x, algorithm="fricas")

[Out]

[1/6*(15*a^(3/2)*b*x*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*(2*b^2*x^2 + 14*a*b*x - 3*a^2)*sqrt(b*x
+ a))/x, 1/3*(15*sqrt(-a)*a*b*x*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (2*b^2*x^2 + 14*a*b*x - 3*a^2)*sqrt(b*x + a
))/x]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 89, normalized size = 0.81 \[ \frac {\sqrt {2} {\left (\frac {15 \, \sqrt {2} a^{2} b^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} + 2 \, \sqrt {2} {\left (b x + a\right )}^{\frac {3}{2}} b^{2} + 12 \, \sqrt {2} \sqrt {b x + a} a b^{2} - \frac {3 \, \sqrt {2} \sqrt {b x + a} a^{2} b}{x}\right )}}{6 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(5/2)/x^2,x, algorithm="giac")

[Out]

1/6*sqrt(2)*(15*sqrt(2)*a^2*b^2*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) + 2*sqrt(2)*(b*x + a)^(3/2)*b^2 + 12*s
qrt(2)*sqrt(b*x + a)*a*b^2 - 3*sqrt(2)*sqrt(b*x + a)*a^2*b/x)/b

________________________________________________________________________________________

maple [A]  time = 0.16, size = 193, normalized size = 1.75 \[ 2 b \left (\frac {\arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}{3}+2 a \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}+2 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right ) \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}+\frac {\left (-\frac {a^{2}}{2}-a \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )-\frac {\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}}{2}\right ) \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{b x}-\frac {5 \left (a^{2}+2 a \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )+\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}\right ) \arctanh \left (\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right )}{2 \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(5/2)/x^2,x)

[Out]

2*b*(1/3*arctanh(tanh(b*x+a))^(3/2)+2*a*arctanh(tanh(b*x+a))^(1/2)+2*(arctanh(tanh(b*x+a))-b*x-a)*arctanh(tanh
(b*x+a))^(1/2)+(-1/2*a^2-a*(arctanh(tanh(b*x+a))-b*x-a)-1/2*(arctanh(tanh(b*x+a))-b*x-a)^2)*arctanh(tanh(b*x+a
))^(1/2)/b/x-5/2*(a^2+2*a*(arctanh(tanh(b*x+a))-b*x-a)+(arctanh(tanh(b*x+a))-b*x-a)^2)/(arctanh(tanh(b*x+a))-b
*x)^(1/2)*arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {5}{2}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(5/2)/x^2,x, algorithm="maxima")

[Out]

integrate(arctanh(tanh(b*x + a))^(5/2)/x^2, x)

________________________________________________________________________________________

mupad [B]  time = 4.97, size = 616, normalized size = 5.60 \[ \frac {2\,b^2\,x\,\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}}{3}-\frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{4\,x}-\frac {\left (3\,b^2\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )-\frac {4\,b^2\,\left (\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}+b\,x\right )}{3}\right )\,\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}}{b}+\frac {\sqrt {2}\,b\,\ln \left (\frac {\left (\sqrt {2}\,b\,x-\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,2{}\mathrm {i}\right )\,16{}\mathrm {i}}{x\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}}\right )\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^{3/2}\,5{}\mathrm {i}}{8} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^(5/2)/x^2,x)

[Out]

(2*b^2*x*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)
)/3 - ((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(
log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2)/(4*x) -
((3*b^2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) -
(4*b^2*(log(2/(exp(2*a)*exp(2*b*x) + 1))/2 - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 + b*x))/
3)*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2))/b +
(2^(1/2)*b*log((((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/
2)^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(
1/2)*2i - 2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) +
 2*b*x) + 2^(1/2)*b*x)*16i)/(x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2
*b*x) + 1)) + 2*b*x)^(1/2)))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b
*x) + 1)) + 2*b*x)^(3/2)*5i)/8

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atanh}^{\frac {5}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(5/2)/x**2,x)

[Out]

Integral(atanh(tanh(a + b*x))**(5/2)/x**2, x)

________________________________________________________________________________________