3.127 \(\int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^3} \, dx\)

Optimal. Leaf size=92 \[ \frac {3 b^2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}-\frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{2 x^2}-\frac {3 b \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{4 x} \]

[Out]

-1/2*arctanh(tanh(b*x+a))^(3/2)/x^2+3/4*b^2*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2)
)/(b*x-arctanh(tanh(b*x+a)))^(1/2)-3/4*b*arctanh(tanh(b*x+a))^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2168, 2161} \[ \frac {3 b^2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}-\frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{2 x^2}-\frac {3 b \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{4 x} \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^(3/2)/x^3,x]

[Out]

(3*b^2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(4*Sqrt[b*x - ArcTanh[Tanh[a +
 b*x]]]) - (3*b*Sqrt[ArcTanh[Tanh[a + b*x]]])/(4*x) - ArcTanh[Tanh[a + b*x]]^(3/2)/(2*x^2)

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^3} \, dx &=-\frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{2 x^2}+\frac {1}{4} (3 b) \int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x^2} \, dx\\ &=-\frac {3 b \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{4 x}-\frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{2 x^2}+\frac {1}{8} \left (3 b^2\right ) \int \frac {1}{x \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=\frac {3 b^2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}-\frac {3 b \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{4 x}-\frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{2 x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 88, normalized size = 0.96 \[ \frac {1}{4} \left (-\frac {3 b^2 \tanh ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}-\frac {2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}{x^2}-\frac {3 b \sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^(3/2)/x^3,x]

[Out]

((-3*b*Sqrt[ArcTanh[Tanh[a + b*x]]])/x - (2*ArcTanh[Tanh[a + b*x]]^(3/2))/x^2 - (3*b^2*ArcTanh[Sqrt[ArcTanh[Ta
nh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]])/4

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 124, normalized size = 1.35 \[ \left [\frac {3 \, \sqrt {a} b^{2} x^{2} \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) - 2 \, {\left (5 \, a b x + 2 \, a^{2}\right )} \sqrt {b x + a}}{8 \, a x^{2}}, \frac {3 \, \sqrt {-a} b^{2} x^{2} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) - {\left (5 \, a b x + 2 \, a^{2}\right )} \sqrt {b x + a}}{4 \, a x^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^3,x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(a)*b^2*x^2*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*(5*a*b*x + 2*a^2)*sqrt(b*x + a))/(a*x
^2), 1/4*(3*sqrt(-a)*b^2*x^2*arctan(sqrt(b*x + a)*sqrt(-a)/a) - (5*a*b*x + 2*a^2)*sqrt(b*x + a))/(a*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 73, normalized size = 0.79 \[ \frac {\sqrt {2} {\left (\frac {3 \, \sqrt {2} b^{3} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} - \frac {\sqrt {2} {\left (5 \, {\left (b x + a\right )}^{\frac {3}{2}} b^{3} - 3 \, \sqrt {b x + a} a b^{3}\right )}}{b^{2} x^{2}}\right )}}{8 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^3,x, algorithm="giac")

[Out]

1/8*sqrt(2)*(3*sqrt(2)*b^3*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) - sqrt(2)*(5*(b*x + a)^(3/2)*b^3 - 3*sqrt(b
*x + a)*a*b^3)/(b^2*x^2))/b

________________________________________________________________________________________

maple [A]  time = 0.15, size = 91, normalized size = 0.99 \[ 2 b^{2} \left (\frac {-\frac {5 \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}{8}+\left (\frac {3 \arctanh \left (\tanh \left (b x +a \right )\right )}{8}-\frac {3 b x}{8}\right ) \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{b^{2} x^{2}}-\frac {3 \arctanh \left (\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right )}{8 \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(3/2)/x^3,x)

[Out]

2*b^2*((-5/8*arctanh(tanh(b*x+a))^(3/2)+(3/8*arctanh(tanh(b*x+a))-3/8*b*x)*arctanh(tanh(b*x+a))^(1/2))/b^2/x^2
-3/8/(arctanh(tanh(b*x+a))-b*x)^(1/2)*arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {3}{2}}}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x^3,x, algorithm="maxima")

[Out]

integrate(arctanh(tanh(b*x + a))^(3/2)/x^3, x)

________________________________________________________________________________________

mupad [B]  time = 6.03, size = 609, normalized size = 6.62 \[ \frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{2\,x^2\,\left (2\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-2\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+4\,b\,x\right )}-\frac {b\,\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\left (\frac {5\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{4}-\frac {5\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{4}+\frac {5\,b\,x}{2}\right )}{x\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}+\frac {\sqrt {2}\,b^2\,\ln \left (\frac {\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,\left (\sqrt {2}\,b\,x-\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,2{}\mathrm {i}\right )\,16{}\mathrm {i}}{x}\right )\,3{}\mathrm {i}}{8\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^(3/2)/x^3,x)

[Out]

((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(log(2/
(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2)/(2*x^2*(2*log(
2/(exp(2*a)*exp(2*b*x) + 1)) - 2*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 4*b*x)) + (2^(1/2)*b
^2*log(((log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1
/2)*((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(lo
g(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*2i - 2^
(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) + 2^
(1/2)*b*x)*16i)/x)*3i)/(8*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x)
 + 1)) + 2*b*x)^(1/2)) - (b*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*
b*x) + 1))/2)^(1/2)*((5*log(2/(exp(2*a)*exp(2*b*x) + 1)))/4 - (5*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b
*x) + 1)))/4 + (5*b*x)/2))/(x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*
b*x) + 1)) + 2*b*x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atanh}^{\frac {3}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}{x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(3/2)/x**3,x)

[Out]

Integral(atanh(tanh(a + b*x))**(3/2)/x**3, x)

________________________________________________________________________________________