3.125 \(\int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x} \, dx\)

Optimal. Leaf size=91 \[ -2 \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {2}{3} \tanh ^{-1}(\tanh (a+b x))^{3/2}+2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \]

[Out]

2*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))*(b*x-arctanh(tanh(b*x+a)))^(3/2)+2/3*arc
tanh(tanh(b*x+a))^(3/2)-2*(b*x-arctanh(tanh(b*x+a)))*arctanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2159, 2161} \[ -2 \sqrt {\tanh ^{-1}(\tanh (a+b x))} \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {2}{3} \tanh ^{-1}(\tanh (a+b x))^{3/2}+2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^(3/2)/x,x]

[Out]

2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]]*(b*x - ArcTanh[Tanh[a + b*x]])^(3/2)
 - 2*(b*x - ArcTanh[Tanh[a + b*x]])*Sqrt[ArcTanh[Tanh[a + b*x]]] + (2*ArcTanh[Tanh[a + b*x]]^(3/2))/3

Rule 2159

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^n/(a*n), x] - Dis
t[(b*u - a*v)/a, Int[v^(n - 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && GtQ[n, 0] && Ne
Q[n, 1]

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\tanh (a+b x))^{3/2}}{x} \, dx &=\frac {2}{3} \tanh ^{-1}(\tanh (a+b x))^{3/2}-\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x} \, dx\\ &=-2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {2}{3} \tanh ^{-1}(\tanh (a+b x))^{3/2}-\left (\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )\right ) \int \frac {1}{x \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right ) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{3/2}-2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \sqrt {\tanh ^{-1}(\tanh (a+b x))}+\frac {2}{3} \tanh ^{-1}(\tanh (a+b x))^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 80, normalized size = 0.88 \[ -\frac {2}{3} \left (-4 \tanh ^{-1}(\tanh (a+b x))^{3/2}+3 b x \sqrt {\tanh ^{-1}(\tanh (a+b x))}+3 \tanh ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right ) \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{3/2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^(3/2)/x,x]

[Out]

(-2*(3*b*x*Sqrt[ArcTanh[Tanh[a + b*x]]] - 4*ArcTanh[Tanh[a + b*x]]^(3/2) + 3*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x
]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]]*(-(b*x) + ArcTanh[Tanh[a + b*x]])^(3/2)))/3

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 88, normalized size = 0.97 \[ \left [a^{\frac {3}{2}} \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + \frac {2}{3} \, {\left (b x + 4 \, a\right )} \sqrt {b x + a}, 2 \, \sqrt {-a} a \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + \frac {2}{3} \, {\left (b x + 4 \, a\right )} \sqrt {b x + a}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x,x, algorithm="fricas")

[Out]

[a^(3/2)*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2/3*(b*x + 4*a)*sqrt(b*x + a), 2*sqrt(-a)*a*arctan(sqr
t(b*x + a)*sqrt(-a)/a) + 2/3*(b*x + 4*a)*sqrt(b*x + a)]

________________________________________________________________________________________

giac [A]  time = 0.22, size = 57, normalized size = 0.63 \[ \frac {1}{3} \, \sqrt {2} {\left (\frac {3 \, \sqrt {2} a^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} + \sqrt {2} {\left (b x + a\right )}^{\frac {3}{2}} + 3 \, \sqrt {2} \sqrt {b x + a} a\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x,x, algorithm="giac")

[Out]

1/3*sqrt(2)*(3*sqrt(2)*a^2*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) + sqrt(2)*(b*x + a)^(3/2) + 3*sqrt(2)*sqrt(
b*x + a)*a)

________________________________________________________________________________________

maple [A]  time = 0.14, size = 131, normalized size = 1.44 \[ \frac {2 \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}{3}+2 a \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}+2 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right ) \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}-\frac {2 \left (a^{2}+2 a \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )+\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )^{2}\right ) \arctanh \left (\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right )}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(3/2)/x,x)

[Out]

2/3*arctanh(tanh(b*x+a))^(3/2)+2*a*arctanh(tanh(b*x+a))^(1/2)+2*(arctanh(tanh(b*x+a))-b*x-a)*arctanh(tanh(b*x+
a))^(1/2)-2*(a^2+2*a*(arctanh(tanh(b*x+a))-b*x-a)+(arctanh(tanh(b*x+a))-b*x-a)^2)/(arctanh(tanh(b*x+a))-b*x)^(
1/2)*arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {3}{2}}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(3/2)/x,x, algorithm="maxima")

[Out]

integrate(arctanh(tanh(b*x + a))^(3/2)/x, x)

________________________________________________________________________________________

mupad [B]  time = 6.00, size = 501, normalized size = 5.51 \[ \frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\left (\frac {4\,b\,\left (\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}+b\,x\right )}{3}-2\,b\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )\right )}{b}+\frac {2\,b\,x\,\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}}{3}+\frac {\sqrt {2}\,\ln \left (\frac {\left (\sqrt {2}\,b\,x-\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,2{}\mathrm {i}\right )\,4{}\mathrm {i}}{x\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}}\right )\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^{3/2}\,1{}\mathrm {i}}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^(3/2)/x,x)

[Out]

((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*((4*b*(
log(2/(exp(2*a)*exp(2*b*x) + 1))/2 - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 + b*x))/3 - 2*b*
(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)))/b + (2^(
1/2)*log((((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/
2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*2
i - 2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x
) + 2^(1/2)*b*x)*4i)/(x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) +
 1)) + 2*b*x)^(1/2)))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1
)) + 2*b*x)^(3/2)*1i)/4 + (2*b*x*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*e
xp(2*b*x) + 1))/2)^(1/2))/3

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atanh}^{\frac {3}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(3/2)/x,x)

[Out]

Integral(atanh(tanh(a + b*x))**(3/2)/x, x)

________________________________________________________________________________________