3.117 \(\int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x^2} \, dx\)

Optimal. Leaf size=66 \[ \frac {b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}-\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x} \]

[Out]

b*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/(b*x-arctanh(tanh(b*x+a)))^(1/2)-arctanh
(tanh(b*x+a))^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2168, 2161} \[ \frac {b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}-\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[ArcTanh[Tanh[a + b*x]]]/x^2,x]

[Out]

(b*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]
 - Sqrt[ArcTanh[Tanh[a + b*x]]]/x

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x^2} \, dx &=-\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x}+\frac {1}{2} b \int \frac {1}{x \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx\\ &=\frac {b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}-\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 65, normalized size = 0.98 \[ -\frac {b \tanh ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}-\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[ArcTanh[Tanh[a + b*x]]]/x^2,x]

[Out]

-(Sqrt[ArcTanh[Tanh[a + b*x]]]/x) - (b*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x
]]]])/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 93, normalized size = 1.41 \[ \left [\frac {\sqrt {a} b x \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) - 2 \, \sqrt {b x + a} a}{2 \, a x}, \frac {\sqrt {-a} b x \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) - \sqrt {b x + a} a}{a x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*b*x*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*sqrt(b*x + a)*a)/(a*x), (sqrt(-a)*b*x*arcta
n(sqrt(b*x + a)*sqrt(-a)/a) - sqrt(b*x + a)*a)/(a*x)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 51, normalized size = 0.77 \[ \frac {\sqrt {2} {\left (\frac {\sqrt {2} b^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} - \frac {\sqrt {2} \sqrt {b x + a} b}{x}\right )}}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2)/x^2,x, algorithm="giac")

[Out]

1/2*sqrt(2)*(sqrt(2)*b^2*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) - sqrt(2)*sqrt(b*x + a)*b/x)/b

________________________________________________________________________________________

maple [A]  time = 0.16, size = 63, normalized size = 0.95 \[ 2 b \left (-\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{2 b x}-\frac {\arctanh \left (\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right )}{2 \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^(1/2)/x^2,x)

[Out]

2*b*(-1/2*arctanh(tanh(b*x+a))^(1/2)/b/x-1/2/(arctanh(tanh(b*x+a))-b*x)^(1/2)*arctanh(arctanh(tanh(b*x+a))^(1/
2)/(arctanh(tanh(b*x+a))-b*x)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\operatorname {artanh}\left (\tanh \left (b x + a\right )\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(arctanh(tanh(b*x + a)))/x^2, x)

________________________________________________________________________________________

mupad [B]  time = 6.97, size = 341, normalized size = 5.17 \[ -\frac {\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}}{x}+\frac {\sqrt {2}\,b\,\ln \left (\frac {\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,\left (\sqrt {2}\,b\,x-\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+\sqrt {\frac {\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}-\frac {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}{2}}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,2{}\mathrm {i}\right )\,1{}\mathrm {i}}{x}\right )\,1{}\mathrm {i}}{2\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^(1/2)/x^2,x)

[Out]

(2^(1/2)*b*log(((log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2
*b*x)^(1/2)*((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(
1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)
*2i - 2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b
*x) + 2^(1/2)*b*x)*1i)/x)*1i)/(2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp
(2*b*x) + 1)) + 2*b*x)^(1/2)) - (log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*ex
p(2*b*x) + 1))/2)^(1/2)/x

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\operatorname {atanh}{\left (\tanh {\left (a + b x \right )} \right )}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**(1/2)/x**2,x)

[Out]

Integral(sqrt(atanh(tanh(a + b*x)))/x**2, x)

________________________________________________________________________________________