3.108 \(\int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^3} \, dx\)

Optimal. Leaf size=97 \[ \frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}-\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3}+\frac {\log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3} \]

[Out]

-1/2/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))^2+1/(b*x-arctanh(tanh(b*x+a)))^2/arctanh(tanh(b*x+a))-ln(
x)/(b*x-arctanh(tanh(b*x+a)))^3+ln(arctanh(tanh(b*x+a)))/(b*x-arctanh(tanh(b*x+a)))^3

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {2163, 2160, 2157, 29} \[ \frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}-\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3}+\frac {\log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*ArcTanh[Tanh[a + b*x]]^3),x]

[Out]

-1/(2*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^2) + 1/((b*x - ArcTanh[Tanh[a + b*x]])^2*ArcTanh[T
anh[a + b*x]]) - Log[x]/(b*x - ArcTanh[Tanh[a + b*x]])^3 + Log[ArcTanh[Tanh[a + b*x]]]/(b*x - ArcTanh[Tanh[a +
 b*x]])^3

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 2160

Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Dist[b/(b*u - a*v), Int[1
/v, x], x] - Dist[a/(b*u - a*v), Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^3} \, dx &=-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}-\frac {\int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^2} \, dx}{b x-\tanh ^{-1}(\tanh (a+b x))}\\ &=-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}+\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {\int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}+\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {\int \frac {1}{x} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}-\frac {b \int \frac {1}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}+\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3}-\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {1}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^2}+\frac {1}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}-\frac {\log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3}+\frac {\log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 74, normalized size = 0.76 \[ \frac {-4 b x \tanh ^{-1}(\tanh (a+b x))+\tanh ^{-1}(\tanh (a+b x))^2 \left (-2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )+2 \log (b x)+3\right )+b^2 x^2}{2 \tanh ^{-1}(\tanh (a+b x))^2 \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*ArcTanh[Tanh[a + b*x]]^3),x]

[Out]

(b^2*x^2 - 4*b*x*ArcTanh[Tanh[a + b*x]] + ArcTanh[Tanh[a + b*x]]^2*(3 + 2*Log[b*x] - 2*Log[ArcTanh[Tanh[a + b*
x]]]))/(2*ArcTanh[Tanh[a + b*x]]^2*(-(b*x) + ArcTanh[Tanh[a + b*x]])^3)

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 80, normalized size = 0.82 \[ \frac {2 \, a b x + 3 \, a^{2} - 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \log \left (b x + a\right ) + 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \log \relax (x)}{2 \, {\left (a^{3} b^{2} x^{2} + 2 \, a^{4} b x + a^{5}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/arctanh(tanh(b*x+a))^3,x, algorithm="fricas")

[Out]

1/2*(2*a*b*x + 3*a^2 - 2*(b^2*x^2 + 2*a*b*x + a^2)*log(b*x + a) + 2*(b^2*x^2 + 2*a*b*x + a^2)*log(x))/(a^3*b^2
*x^2 + 2*a^4*b*x + a^5)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 43, normalized size = 0.44 \[ -\frac {\log \left ({\left | b x + a \right |}\right )}{a^{3}} + \frac {\log \left ({\left | x \right |}\right )}{a^{3}} + \frac {2 \, a b x + 3 \, a^{2}}{2 \, {\left (b x + a\right )}^{2} a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/arctanh(tanh(b*x+a))^3,x, algorithm="giac")

[Out]

-log(abs(b*x + a))/a^3 + log(abs(x))/a^3 + 1/2*(2*a*b*x + 3*a^2)/((b*x + a)^2*a^3)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 92, normalized size = 0.95 \[ \frac {\ln \relax (x )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3}}-\frac {\ln \left (\arctanh \left (\tanh \left (b x +a \right )\right )\right )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3}}+\frac {1}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \arctanh \left (\tanh \left (b x +a \right )\right )}+\frac {1}{2 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right ) \arctanh \left (\tanh \left (b x +a \right )\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/arctanh(tanh(b*x+a))^3,x)

[Out]

1/(arctanh(tanh(b*x+a))-b*x)^3*ln(x)-1/(arctanh(tanh(b*x+a))-b*x)^3*ln(arctanh(tanh(b*x+a)))+1/(arctanh(tanh(b
*x+a))-b*x)^2/arctanh(tanh(b*x+a))+1/2/(arctanh(tanh(b*x+a))-b*x)/arctanh(tanh(b*x+a))^2

________________________________________________________________________________________

maxima [A]  time = 4.32, size = 51, normalized size = 0.53 \[ \frac {2 \, b x + 3 \, a}{2 \, {\left (a^{2} b^{2} x^{2} + 2 \, a^{3} b x + a^{4}\right )}} - \frac {\log \left (b x + a\right )}{a^{3}} + \frac {\log \relax (x)}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/arctanh(tanh(b*x+a))^3,x, algorithm="maxima")

[Out]

1/2*(2*b*x + 3*a)/(a^2*b^2*x^2 + 2*a^3*b*x + a^4) - log(b*x + a)/a^3 + log(x)/a^3

________________________________________________________________________________________

mupad [B]  time = 3.66, size = 645, normalized size = 6.65 \[ -\frac {12\,{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2-24\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+12\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2+16\,b^2\,x^2+b\,x\,\left (32\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-32\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )-{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2\,\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,16{}\mathrm {i}-{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2\,\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,16{}\mathrm {i}+\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,32{}\mathrm {i}}{{\left (\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}^2\,{\left (\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*atanh(tanh(a + b*x))^3),x)

[Out]

-(12*log(1/(exp(2*a)*exp(2*b*x) + 1))^2 - 24*log(1/(exp(2*a)*exp(2*b*x) + 1))*log((exp(2*a)*exp(2*b*x))/(exp(2
*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^2*atan((log((exp(2*a)*exp(2*b*x))/
(exp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)
) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*16i - log(1/(exp(2*a)*exp(2*b*x) + 1))^2*at
an((log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(l
og(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*16i + 12*log(
(exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^2 + 16*b^2*x^2 + log(1/(exp(2*a)*exp(2*b*x) + 1))*log((exp(2*
a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*atan((log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log(
1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2
*a)*exp(2*b*x) + 1)) + 2*b*x))*32i + b*x*(32*log(1/(exp(2*a)*exp(2*b*x) + 1)) - 32*log((exp(2*a)*exp(2*b*x))/(
exp(2*a)*exp(2*b*x) + 1))))/((log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x
) + 1)))^2*(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3
)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/atanh(tanh(b*x+a))**3,x)

[Out]

Integral(1/(x*atanh(tanh(a + b*x))**3), x)

________________________________________________________________________________________