3.101 \(\int \frac {1}{x^3 \tanh ^{-1}(\tanh (a+b x))^2} \, dx\)

Optimal. Leaf size=143 \[ -\frac {3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac {3 b^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))} \]

[Out]

-3*b^2/(b*x-arctanh(tanh(b*x+a)))^3/arctanh(tanh(b*x+a))+3/2*b/x/(b*x-arctanh(tanh(b*x+a)))^2/arctanh(tanh(b*x
+a))+1/2/x^2/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))+3*b^2*ln(x)/(b*x-arctanh(tanh(b*x+a)))^4-3*b^2*ln
(arctanh(tanh(b*x+a)))/(b*x-arctanh(tanh(b*x+a)))^4

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {2171, 2163, 2160, 2157, 29} \[ -\frac {3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac {3 b^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

(-3*b^2)/((b*x - ArcTanh[Tanh[a + b*x]])^3*ArcTanh[Tanh[a + b*x]]) + (3*b)/(2*x*(b*x - ArcTanh[Tanh[a + b*x]])
^2*ArcTanh[Tanh[a + b*x]]) + 1/(2*x^2*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]) + (3*b^2*Log[x])/
(b*x - ArcTanh[Tanh[a + b*x]])^4 - (3*b^2*Log[ArcTanh[Tanh[a + b*x]]])/(b*x - ArcTanh[Tanh[a + b*x]])^4

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2157

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 2160

Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Dist[b/(b*u - a*v), Int[1
/v, x], x] - Dist[a/(b*u - a*v), Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2171

Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, -Simp[(u^(m + 1)*v^
(n + 1))/((m + 1)*(b*u - a*v)), x] + Dist[(b*(m + n + 2))/((m + 1)*(b*u - a*v)), Int[u^(m + 1)*v^n, x], x] /;
NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \tanh ^{-1}(\tanh (a+b x))^2} \, dx &=\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {(3 b) \int \frac {1}{x^2 \tanh ^{-1}(\tanh (a+b x))^2} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}-\frac {\left (3 b^2\right ) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^2} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}-\frac {\left (3 b^2\right ) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac {3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {\left (3 b^2\right ) \int \frac {1}{x} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}-\frac {\left (3 b^3\right ) \int \frac {1}{\tanh ^{-1}(\tanh (a+b x))} \, dx}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac {3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac {\left (3 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac {3 b^2}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b}{2 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))}+\frac {1}{2 x^2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))}+\frac {3 b^2 \log (x)}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}-\frac {3 b^2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 92, normalized size = 0.64 \[ -\frac {-3 b^2 x^2 \tanh ^{-1}(\tanh (a+b x)) \left (-2 \log \left (\tanh ^{-1}(\tanh (a+b x))\right )+2 \log (x)-1\right )-6 b x \tanh ^{-1}(\tanh (a+b x))^2+\tanh ^{-1}(\tanh (a+b x))^3+2 b^3 x^3}{2 x^2 \tanh ^{-1}(\tanh (a+b x)) \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*ArcTanh[Tanh[a + b*x]]^2),x]

[Out]

-1/2*(2*b^3*x^3 - 6*b*x*ArcTanh[Tanh[a + b*x]]^2 + ArcTanh[Tanh[a + b*x]]^3 - 3*b^2*x^2*ArcTanh[Tanh[a + b*x]]
*(-1 + 2*Log[x] - 2*Log[ArcTanh[Tanh[a + b*x]]]))/(x^2*ArcTanh[Tanh[a + b*x]]*(-(b*x) + ArcTanh[Tanh[a + b*x]]
)^4)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 86, normalized size = 0.60 \[ \frac {6 \, a b^{2} x^{2} + 3 \, a^{2} b x - a^{3} - 6 \, {\left (b^{3} x^{3} + a b^{2} x^{2}\right )} \log \left (b x + a\right ) + 6 \, {\left (b^{3} x^{3} + a b^{2} x^{2}\right )} \log \relax (x)}{2 \, {\left (a^{4} b x^{3} + a^{5} x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^2,x, algorithm="fricas")

[Out]

1/2*(6*a*b^2*x^2 + 3*a^2*b*x - a^3 - 6*(b^3*x^3 + a*b^2*x^2)*log(b*x + a) + 6*(b^3*x^3 + a*b^2*x^2)*log(x))/(a
^4*b*x^3 + a^5*x^2)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 64, normalized size = 0.45 \[ -\frac {3 \, b^{2} \log \left ({\left | b x + a \right |}\right )}{a^{4}} + \frac {3 \, b^{2} \log \left ({\left | x \right |}\right )}{a^{4}} + \frac {6 \, a b^{2} x^{2} + 3 \, a^{2} b x - a^{3}}{2 \, {\left (b x + a\right )} a^{4} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^2,x, algorithm="giac")

[Out]

-3*b^2*log(abs(b*x + a))/a^4 + 3*b^2*log(abs(x))/a^4 + 1/2*(6*a*b^2*x^2 + 3*a^2*b*x - a^3)/((b*x + a)*a^4*x^2)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 116, normalized size = 0.81 \[ -\frac {1}{2 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} x^{2}}+\frac {3 b^{2} \ln \relax (x )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{4}}+\frac {2 b}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3} x}-\frac {3 b^{2} \ln \left (\arctanh \left (\tanh \left (b x +a \right )\right )\right )}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{4}}+\frac {b^{2}}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3} \arctanh \left (\tanh \left (b x +a \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/arctanh(tanh(b*x+a))^2,x)

[Out]

-1/2/(arctanh(tanh(b*x+a))-b*x)^2/x^2+3/(arctanh(tanh(b*x+a))-b*x)^4*b^2*ln(x)+2/(arctanh(tanh(b*x+a))-b*x)^3*
b/x-3/(arctanh(tanh(b*x+a))-b*x)^4*b^2*ln(arctanh(tanh(b*x+a)))+1/(arctanh(tanh(b*x+a))-b*x)^3*b^2/arctanh(tan
h(b*x+a))

________________________________________________________________________________________

maxima [A]  time = 1.02, size = 64, normalized size = 0.45 \[ \frac {6 \, b^{2} x^{2} + 3 \, a b x - a^{2}}{2 \, {\left (a^{3} b x^{3} + a^{4} x^{2}\right )}} - \frac {3 \, b^{2} \log \left (b x + a\right )}{a^{4}} + \frac {3 \, b^{2} \log \relax (x)}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^2,x, algorithm="maxima")

[Out]

1/2*(6*b^2*x^2 + 3*a*b*x - a^2)/(a^3*b*x^3 + a^4*x^2) - 3*b^2*log(b*x + a)/a^4 + 3*b^2*log(x)/a^4

________________________________________________________________________________________

mupad [B]  time = 3.72, size = 660, normalized size = 4.62 \[ -\frac {6\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2-6\,{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^3-2\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^3-32\,b^3\,x^3+24\,b\,x\,{\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2+24\,b^2\,x^2\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-24\,b^2\,x^2\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+24\,b\,x\,{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}^2-48\,b\,x\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+b^2\,x^2\,\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,96{}\mathrm {i}-b^2\,x^2\,\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\mathrm {atan}\left (\frac {-\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,1{}\mathrm {i}+b\,x\,2{}\mathrm {i}}{\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\right )\,96{}\mathrm {i}}{x^2\,\left (\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )\,{\left (\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*atanh(tanh(a + b*x))^2),x)

[Out]

-(6*log(1/(exp(2*a)*exp(2*b*x) + 1))*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^2 - 6*log(1/(exp(2*a
)*exp(2*b*x) + 1))^2*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*log(1/(exp(2*a)*exp(2*b*x) + 1))
^3 - 2*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^3 - 32*b^3*x^3 + 24*b*x*log((exp(2*a)*exp(2*b*x))/
(exp(2*a)*exp(2*b*x) + 1))^2 + 24*b^2*x^2*log(1/(exp(2*a)*exp(2*b*x) + 1)) - 24*b^2*x^2*log((exp(2*a)*exp(2*b*
x))/(exp(2*a)*exp(2*b*x) + 1)) + 24*b*x*log(1/(exp(2*a)*exp(2*b*x) + 1))^2 + b^2*x^2*log(1/(exp(2*a)*exp(2*b*x
) + 1))*atan((log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2*a)*exp(2*b*x) + 1))*1i +
b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*96i
 - b^2*x^2*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*atan((log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(
2*b*x) + 1))*1i - log(1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2
*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*96i - 48*b*x*log(1/(exp(2*a)*exp(2*b*x) + 1))*log((exp(2*
a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)))/(x^2*(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/
(exp(2*a)*exp(2*b*x) + 1)))*(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x)
 + 1)) + 2*b*x)^4)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/atanh(tanh(b*x+a))**2,x)

[Out]

Integral(1/(x**3*atanh(tanh(a + b*x))**2), x)

________________________________________________________________________________________