3.905 \(\int \frac {e^{\tanh ^{-1}(a x)}}{x^3 (c-a^2 c x^2)^2} \, dx\)

Optimal. Leaf size=134 \[ -\frac {8 a \sqrt {1-a^2 x^2}}{3 c^2 x}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}+\frac {4 a x+5}{3 c^2 x^2 \sqrt {1-a^2 x^2}}+\frac {a x+1}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {5 a^2 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )}{2 c^2} \]

[Out]

1/3*(a*x+1)/c^2/x^2/(-a^2*x^2+1)^(3/2)-5/2*a^2*arctanh((-a^2*x^2+1)^(1/2))/c^2+1/3*(4*a*x+5)/c^2/x^2/(-a^2*x^2
+1)^(1/2)-5/2*(-a^2*x^2+1)^(1/2)/c^2/x^2-8/3*a*(-a^2*x^2+1)^(1/2)/c^2/x

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {6148, 823, 835, 807, 266, 63, 208} \[ -\frac {8 a \sqrt {1-a^2 x^2}}{3 c^2 x}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}+\frac {4 a x+5}{3 c^2 x^2 \sqrt {1-a^2 x^2}}+\frac {a x+1}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}-\frac {5 a^2 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )}{2 c^2} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]/(x^3*(c - a^2*c*x^2)^2),x]

[Out]

(1 + a*x)/(3*c^2*x^2*(1 - a^2*x^2)^(3/2)) + (5 + 4*a*x)/(3*c^2*x^2*Sqrt[1 - a^2*x^2]) - (5*Sqrt[1 - a^2*x^2])/
(2*c^2*x^2) - (8*a*Sqrt[1 - a^2*x^2])/(3*c^2*x) - (5*a^2*ArcTanh[Sqrt[1 - a^2*x^2]])/(2*c^2)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(
m + 1)*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), x] + Di
st[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^2*
(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 835

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((e*f - d*g)
*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 6148

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || Gt
Q[c, 0]) && IGtQ[(n + 1)/2, 0] &&  !IntegerQ[p - n/2]

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(a x)}}{x^3 \left (c-a^2 c x^2\right )^2} \, dx &=\frac {\int \frac {1+a x}{x^3 \left (1-a^2 x^2\right )^{5/2}} \, dx}{c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {\int \frac {5 a^2+4 a^3 x}{x^3 \left (1-a^2 x^2\right )^{3/2}} \, dx}{3 a^2 c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {5+4 a x}{3 c^2 x^2 \sqrt {1-a^2 x^2}}+\frac {\int \frac {15 a^4+8 a^5 x}{x^3 \sqrt {1-a^2 x^2}} \, dx}{3 a^4 c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {5+4 a x}{3 c^2 x^2 \sqrt {1-a^2 x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}-\frac {\int \frac {-16 a^5-15 a^6 x}{x^2 \sqrt {1-a^2 x^2}} \, dx}{6 a^4 c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {5+4 a x}{3 c^2 x^2 \sqrt {1-a^2 x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}-\frac {8 a \sqrt {1-a^2 x^2}}{3 c^2 x}+\frac {\left (5 a^2\right ) \int \frac {1}{x \sqrt {1-a^2 x^2}} \, dx}{2 c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {5+4 a x}{3 c^2 x^2 \sqrt {1-a^2 x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}-\frac {8 a \sqrt {1-a^2 x^2}}{3 c^2 x}+\frac {\left (5 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-a^2 x}} \, dx,x,x^2\right )}{4 c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {5+4 a x}{3 c^2 x^2 \sqrt {1-a^2 x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}-\frac {8 a \sqrt {1-a^2 x^2}}{3 c^2 x}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2}} \, dx,x,\sqrt {1-a^2 x^2}\right )}{2 c^2}\\ &=\frac {1+a x}{3 c^2 x^2 \left (1-a^2 x^2\right )^{3/2}}+\frac {5+4 a x}{3 c^2 x^2 \sqrt {1-a^2 x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{2 c^2 x^2}-\frac {8 a \sqrt {1-a^2 x^2}}{3 c^2 x}-\frac {5 a^2 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )}{2 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 103, normalized size = 0.77 \[ \frac {16 a^4 x^4-a^3 x^3-23 a^2 x^2-15 a^2 x^2 (a x-1) \sqrt {1-a^2 x^2} \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )+3 a x+3}{6 c^2 x^2 (a x-1) \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTanh[a*x]/(x^3*(c - a^2*c*x^2)^2),x]

[Out]

(3 + 3*a*x - 23*a^2*x^2 - a^3*x^3 + 16*a^4*x^4 - 15*a^2*x^2*(-1 + a*x)*Sqrt[1 - a^2*x^2]*ArcTanh[Sqrt[1 - a^2*
x^2]])/(6*c^2*x^2*(-1 + a*x)*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 171, normalized size = 1.28 \[ \frac {14 \, a^{5} x^{5} - 14 \, a^{4} x^{4} - 14 \, a^{3} x^{3} + 14 \, a^{2} x^{2} + 15 \, {\left (a^{5} x^{5} - a^{4} x^{4} - a^{3} x^{3} + a^{2} x^{2}\right )} \log \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{x}\right ) - {\left (16 \, a^{4} x^{4} - a^{3} x^{3} - 23 \, a^{2} x^{2} + 3 \, a x + 3\right )} \sqrt {-a^{2} x^{2} + 1}}{6 \, {\left (a^{3} c^{2} x^{5} - a^{2} c^{2} x^{4} - a c^{2} x^{3} + c^{2} x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3/(-a^2*c*x^2+c)^2,x, algorithm="fricas")

[Out]

1/6*(14*a^5*x^5 - 14*a^4*x^4 - 14*a^3*x^3 + 14*a^2*x^2 + 15*(a^5*x^5 - a^4*x^4 - a^3*x^3 + a^2*x^2)*log((sqrt(
-a^2*x^2 + 1) - 1)/x) - (16*a^4*x^4 - a^3*x^3 - 23*a^2*x^2 + 3*a*x + 3)*sqrt(-a^2*x^2 + 1))/(a^3*c^2*x^5 - a^2
*c^2*x^4 - a*c^2*x^3 + c^2*x^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a x + 1}{{\left (a^{2} c x^{2} - c\right )}^{2} \sqrt {-a^{2} x^{2} + 1} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3/(-a^2*c*x^2+c)^2,x, algorithm="giac")

[Out]

integrate((a*x + 1)/((a^2*c*x^2 - c)^2*sqrt(-a^2*x^2 + 1)*x^3), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 214, normalized size = 1.60 \[ \frac {-\frac {5 a^{2} \arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )}{2}-\frac {a \sqrt {-a^{2} x^{2}+1}}{x}+\frac {a \left (\frac {\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}\right )}{2}-\frac {7 a \sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{4 \left (x -\frac {1}{a}\right )}-\frac {\sqrt {-a^{2} x^{2}+1}}{2 x^{2}}+\frac {a \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{4 x +\frac {4}{a}}}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3/(-a^2*c*x^2+c)^2,x)

[Out]

1/c^2*(-5/2*a^2*arctanh(1/(-a^2*x^2+1)^(1/2))-a*(-a^2*x^2+1)^(1/2)/x+1/2*a*(1/3/a/(x-1/a)^2*(-a^2*(x-1/a)^2-2*
a*(x-1/a))^(1/2)-1/3/(x-1/a)*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2))-7/4*a/(x-1/a)*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1
/2)-1/2*(-a^2*x^2+1)^(1/2)/x^2+1/4*a/(x+1/a)*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a x + 1}{{\left (a^{2} c x^{2} - c\right )}^{2} \sqrt {-a^{2} x^{2} + 1} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3/(-a^2*c*x^2+c)^2,x, algorithm="maxima")

[Out]

integrate((a*x + 1)/((a^2*c*x^2 - c)^2*sqrt(-a^2*x^2 + 1)*x^3), x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 221, normalized size = 1.65 \[ \frac {a^4\,\sqrt {1-a^2\,x^2}}{6\,\left (a^4\,c^2\,x^2-2\,a^3\,c^2\,x+a^2\,c^2\right )}-\frac {\sqrt {1-a^2\,x^2}}{2\,c^2\,x^2}-\frac {a\,\sqrt {1-a^2\,x^2}}{c^2\,x}-\frac {a^3\,\sqrt {1-a^2\,x^2}}{4\,\sqrt {-a^2}\,\left (c^2\,x\,\sqrt {-a^2}+\frac {c^2\,\sqrt {-a^2}}{a}\right )}+\frac {23\,a^3\,\sqrt {1-a^2\,x^2}}{12\,\sqrt {-a^2}\,\left (c^2\,x\,\sqrt {-a^2}-\frac {c^2\,\sqrt {-a^2}}{a}\right )}+\frac {a^2\,\mathrm {atan}\left (\sqrt {1-a^2\,x^2}\,1{}\mathrm {i}\right )\,5{}\mathrm {i}}{2\,c^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + 1)/(x^3*(c - a^2*c*x^2)^2*(1 - a^2*x^2)^(1/2)),x)

[Out]

(a^2*atan((1 - a^2*x^2)^(1/2)*1i)*5i)/(2*c^2) + (a^4*(1 - a^2*x^2)^(1/2))/(6*(a^2*c^2 - 2*a^3*c^2*x + a^4*c^2*
x^2)) - (1 - a^2*x^2)^(1/2)/(2*c^2*x^2) - (a*(1 - a^2*x^2)^(1/2))/(c^2*x) - (a^3*(1 - a^2*x^2)^(1/2))/(4*(-a^2
)^(1/2)*(c^2*x*(-a^2)^(1/2) + (c^2*(-a^2)^(1/2))/a)) + (23*a^3*(1 - a^2*x^2)^(1/2))/(12*(-a^2)^(1/2)*(c^2*x*(-
a^2)^(1/2) - (c^2*(-a^2)^(1/2))/a))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {a}{a^{4} x^{6} \sqrt {- a^{2} x^{2} + 1} - 2 a^{2} x^{4} \sqrt {- a^{2} x^{2} + 1} + x^{2} \sqrt {- a^{2} x^{2} + 1}}\, dx + \int \frac {1}{a^{4} x^{7} \sqrt {- a^{2} x^{2} + 1} - 2 a^{2} x^{5} \sqrt {- a^{2} x^{2} + 1} + x^{3} \sqrt {- a^{2} x^{2} + 1}}\, dx}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)/x**3/(-a**2*c*x**2+c)**2,x)

[Out]

(Integral(a/(a**4*x**6*sqrt(-a**2*x**2 + 1) - 2*a**2*x**4*sqrt(-a**2*x**2 + 1) + x**2*sqrt(-a**2*x**2 + 1)), x
) + Integral(1/(a**4*x**7*sqrt(-a**2*x**2 + 1) - 2*a**2*x**5*sqrt(-a**2*x**2 + 1) + x**3*sqrt(-a**2*x**2 + 1))
, x))/c**2

________________________________________________________________________________________