3.883 \(\int e^{\tanh ^{-1}(a x)} (c-a^2 c x^2)^4 \, dx\)

Optimal. Leaf size=127 \[ -\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}+\frac {7}{48} c^4 x \left (1-a^2 x^2\right )^{5/2}+\frac {35}{192} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {35}{128} c^4 x \sqrt {1-a^2 x^2}+\frac {35 c^4 \sin ^{-1}(a x)}{128 a} \]

[Out]

35/192*c^4*x*(-a^2*x^2+1)^(3/2)+7/48*c^4*x*(-a^2*x^2+1)^(5/2)+1/8*c^4*x*(-a^2*x^2+1)^(7/2)-1/9*c^4*(-a^2*x^2+1
)^(9/2)/a+35/128*c^4*arcsin(a*x)/a+35/128*c^4*x*(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6138, 641, 195, 216} \[ -\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}+\frac {7}{48} c^4 x \left (1-a^2 x^2\right )^{5/2}+\frac {35}{192} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {35}{128} c^4 x \sqrt {1-a^2 x^2}+\frac {35 c^4 \sin ^{-1}(a x)}{128 a} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]*(c - a^2*c*x^2)^4,x]

[Out]

(35*c^4*x*Sqrt[1 - a^2*x^2])/128 + (35*c^4*x*(1 - a^2*x^2)^(3/2))/192 + (7*c^4*x*(1 - a^2*x^2)^(5/2))/48 + (c^
4*x*(1 - a^2*x^2)^(7/2))/8 - (c^4*(1 - a^2*x^2)^(9/2))/(9*a) + (35*c^4*ArcSin[a*x])/(128*a)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 6138

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(1 - a^2*x^2)^(p - n
/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && IGtQ[(n + 1)/2, 0] &&
  !IntegerQ[p - n/2]

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^4 \, dx &=c^4 \int (1+a x) \left (1-a^2 x^2\right )^{7/2} \, dx\\ &=-\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+c^4 \int \left (1-a^2 x^2\right )^{7/2} \, dx\\ &=\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}-\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {1}{8} \left (7 c^4\right ) \int \left (1-a^2 x^2\right )^{5/2} \, dx\\ &=\frac {7}{48} c^4 x \left (1-a^2 x^2\right )^{5/2}+\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}-\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {1}{48} \left (35 c^4\right ) \int \left (1-a^2 x^2\right )^{3/2} \, dx\\ &=\frac {35}{192} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {7}{48} c^4 x \left (1-a^2 x^2\right )^{5/2}+\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}-\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {1}{64} \left (35 c^4\right ) \int \sqrt {1-a^2 x^2} \, dx\\ &=\frac {35}{128} c^4 x \sqrt {1-a^2 x^2}+\frac {35}{192} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {7}{48} c^4 x \left (1-a^2 x^2\right )^{5/2}+\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}-\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {1}{128} \left (35 c^4\right ) \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx\\ &=\frac {35}{128} c^4 x \sqrt {1-a^2 x^2}+\frac {35}{192} c^4 x \left (1-a^2 x^2\right )^{3/2}+\frac {7}{48} c^4 x \left (1-a^2 x^2\right )^{5/2}+\frac {1}{8} c^4 x \left (1-a^2 x^2\right )^{7/2}-\frac {c^4 \left (1-a^2 x^2\right )^{9/2}}{9 a}+\frac {35 c^4 \sin ^{-1}(a x)}{128 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 107, normalized size = 0.84 \[ -\frac {c^4 \left (\sqrt {1-a^2 x^2} \left (128 a^8 x^8+144 a^7 x^7-512 a^6 x^6-600 a^5 x^5+768 a^4 x^4+978 a^3 x^3-512 a^2 x^2-837 a x+128\right )+630 \sin ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )\right )}{1152 a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]*(c - a^2*c*x^2)^4,x]

[Out]

-1/1152*(c^4*(Sqrt[1 - a^2*x^2]*(128 - 837*a*x - 512*a^2*x^2 + 978*a^3*x^3 + 768*a^4*x^4 - 600*a^5*x^5 - 512*a
^6*x^6 + 144*a^7*x^7 + 128*a^8*x^8) + 630*ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/a

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 136, normalized size = 1.07 \[ -\frac {630 \, c^{4} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + {\left (128 \, a^{8} c^{4} x^{8} + 144 \, a^{7} c^{4} x^{7} - 512 \, a^{6} c^{4} x^{6} - 600 \, a^{5} c^{4} x^{5} + 768 \, a^{4} c^{4} x^{4} + 978 \, a^{3} c^{4} x^{3} - 512 \, a^{2} c^{4} x^{2} - 837 \, a c^{4} x + 128 \, c^{4}\right )} \sqrt {-a^{2} x^{2} + 1}}{1152 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a^2*c*x^2+c)^4,x, algorithm="fricas")

[Out]

-1/1152*(630*c^4*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + (128*a^8*c^4*x^8 + 144*a^7*c^4*x^7 - 512*a^6*c^4*x^6
 - 600*a^5*c^4*x^5 + 768*a^4*c^4*x^4 + 978*a^3*c^4*x^3 - 512*a^2*c^4*x^2 - 837*a*c^4*x + 128*c^4)*sqrt(-a^2*x^
2 + 1))/a

________________________________________________________________________________________

giac [A]  time = 0.20, size = 127, normalized size = 1.00 \[ \frac {35 \, c^{4} \arcsin \left (a x\right ) \mathrm {sgn}\relax (a)}{128 \, {\left | a \right |}} - \frac {1}{1152} \, \sqrt {-a^{2} x^{2} + 1} {\left (\frac {128 \, c^{4}}{a} - {\left (837 \, c^{4} + 2 \, {\left (256 \, a c^{4} - {\left (489 \, a^{2} c^{4} + 4 \, {\left (96 \, a^{3} c^{4} - {\left (75 \, a^{4} c^{4} + 2 \, {\left (32 \, a^{5} c^{4} - {\left (8 \, a^{7} c^{4} x + 9 \, a^{6} c^{4}\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a^2*c*x^2+c)^4,x, algorithm="giac")

[Out]

35/128*c^4*arcsin(a*x)*sgn(a)/abs(a) - 1/1152*sqrt(-a^2*x^2 + 1)*(128*c^4/a - (837*c^4 + 2*(256*a*c^4 - (489*a
^2*c^4 + 4*(96*a^3*c^4 - (75*a^4*c^4 + 2*(32*a^5*c^4 - (8*a^7*c^4*x + 9*a^6*c^4)*x)*x)*x)*x)*x)*x)*x)

________________________________________________________________________________________

maple [B]  time = 0.09, size = 229, normalized size = 1.80 \[ \frac {93 c^{4} x \sqrt {-a^{2} x^{2}+1}}{128}-\frac {c^{4} \sqrt {-a^{2} x^{2}+1}}{9 a}-\frac {c^{4} a^{7} x^{8} \sqrt {-a^{2} x^{2}+1}}{9}+\frac {4 c^{4} a^{5} x^{6} \sqrt {-a^{2} x^{2}+1}}{9}-\frac {2 c^{4} a^{3} x^{4} \sqrt {-a^{2} x^{2}+1}}{3}+\frac {4 c^{4} a \,x^{2} \sqrt {-a^{2} x^{2}+1}}{9}-\frac {c^{4} a^{6} x^{7} \sqrt {-a^{2} x^{2}+1}}{8}+\frac {25 c^{4} a^{4} x^{5} \sqrt {-a^{2} x^{2}+1}}{48}-\frac {163 c^{4} a^{2} x^{3} \sqrt {-a^{2} x^{2}+1}}{192}+\frac {35 c^{4} \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{128 \sqrt {a^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a^2*c*x^2+c)^4,x)

[Out]

93/128*c^4*x*(-a^2*x^2+1)^(1/2)-1/9*c^4*(-a^2*x^2+1)^(1/2)/a-1/9*c^4*a^7*x^8*(-a^2*x^2+1)^(1/2)+4/9*c^4*a^5*x^
6*(-a^2*x^2+1)^(1/2)-2/3*c^4*a^3*x^4*(-a^2*x^2+1)^(1/2)+4/9*c^4*a*x^2*(-a^2*x^2+1)^(1/2)-1/8*c^4*a^6*x^7*(-a^2
*x^2+1)^(1/2)+25/48*c^4*a^4*x^5*(-a^2*x^2+1)^(1/2)-163/192*c^4*a^2*x^3*(-a^2*x^2+1)^(1/2)+35/128*c^4/(a^2)^(1/
2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 210, normalized size = 1.65 \[ -\frac {1}{9} \, \sqrt {-a^{2} x^{2} + 1} a^{7} c^{4} x^{8} - \frac {1}{8} \, \sqrt {-a^{2} x^{2} + 1} a^{6} c^{4} x^{7} + \frac {4}{9} \, \sqrt {-a^{2} x^{2} + 1} a^{5} c^{4} x^{6} + \frac {25}{48} \, \sqrt {-a^{2} x^{2} + 1} a^{4} c^{4} x^{5} - \frac {2}{3} \, \sqrt {-a^{2} x^{2} + 1} a^{3} c^{4} x^{4} - \frac {163}{192} \, \sqrt {-a^{2} x^{2} + 1} a^{2} c^{4} x^{3} + \frac {4}{9} \, \sqrt {-a^{2} x^{2} + 1} a c^{4} x^{2} + \frac {93}{128} \, \sqrt {-a^{2} x^{2} + 1} c^{4} x + \frac {35 \, c^{4} \arcsin \left (a x\right )}{128 \, a} - \frac {\sqrt {-a^{2} x^{2} + 1} c^{4}}{9 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a^2*c*x^2+c)^4,x, algorithm="maxima")

[Out]

-1/9*sqrt(-a^2*x^2 + 1)*a^7*c^4*x^8 - 1/8*sqrt(-a^2*x^2 + 1)*a^6*c^4*x^7 + 4/9*sqrt(-a^2*x^2 + 1)*a^5*c^4*x^6
+ 25/48*sqrt(-a^2*x^2 + 1)*a^4*c^4*x^5 - 2/3*sqrt(-a^2*x^2 + 1)*a^3*c^4*x^4 - 163/192*sqrt(-a^2*x^2 + 1)*a^2*c
^4*x^3 + 4/9*sqrt(-a^2*x^2 + 1)*a*c^4*x^2 + 93/128*sqrt(-a^2*x^2 + 1)*c^4*x + 35/128*c^4*arcsin(a*x)/a - 1/9*s
qrt(-a^2*x^2 + 1)*c^4/a

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 118, normalized size = 0.93 \[ \frac {35\,c^4\,x\,\sqrt {1-a^2\,x^2}}{128}+\frac {35\,c^4\,x\,{\left (1-a^2\,x^2\right )}^{3/2}}{192}+\frac {7\,c^4\,x\,{\left (1-a^2\,x^2\right )}^{5/2}}{48}+\frac {c^4\,x\,{\left (1-a^2\,x^2\right )}^{7/2}}{8}-\frac {c^4\,{\left (1-a^2\,x^2\right )}^{9/2}}{9\,a}-\frac {35\,c^4\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )\,\sqrt {-a^2}}{128\,a^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - a^2*c*x^2)^4*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)

[Out]

(35*c^4*x*(1 - a^2*x^2)^(1/2))/128 + (35*c^4*x*(1 - a^2*x^2)^(3/2))/192 + (7*c^4*x*(1 - a^2*x^2)^(5/2))/48 + (
c^4*x*(1 - a^2*x^2)^(7/2))/8 - (c^4*(1 - a^2*x^2)^(9/2))/(9*a) - (35*c^4*asinh(x*(-a^2)^(1/2))*(-a^2)^(1/2))/(
128*a^2)

________________________________________________________________________________________

sympy [A]  time = 40.90, size = 452, normalized size = 3.56 \[ \begin {cases} \frac {- \frac {c^{4} \left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{3} + c^{4} \left (\begin {cases} \frac {a x \sqrt {- a^{2} x^{2} + 1}}{2} + \frac {\operatorname {asin}{\left (a x \right )}}{2} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) - 3 c^{4} \left (\begin {cases} - \frac {a x \left (- 2 a^{2} x^{2} + 1\right ) \sqrt {- a^{2} x^{2} + 1}}{8} + \frac {\operatorname {asin}{\left (a x \right )}}{8} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) - 3 c^{4} \left (\begin {cases} \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {5}{2}}}{5} - \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{3} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) + 3 c^{4} \left (\begin {cases} - \frac {a^{3} x^{3} \left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{6} - \frac {a x \left (- 2 a^{2} x^{2} + 1\right ) \sqrt {- a^{2} x^{2} + 1}}{16} + \frac {\operatorname {asin}{\left (a x \right )}}{16} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) + 3 c^{4} \left (\begin {cases} - \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {7}{2}}}{7} + \frac {2 \left (- a^{2} x^{2} + 1\right )^{\frac {5}{2}}}{5} - \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{3} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) - c^{4} \left (\begin {cases} - \frac {a^{3} x^{3} \left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{6} - \frac {a x \left (- 2 a^{2} x^{2} + 1\right ) \sqrt {- a^{2} x^{2} + 1}}{32} - \frac {a x \sqrt {- a^{2} x^{2} + 1} \left (- 16 a^{6} x^{6} + 24 a^{4} x^{4} - 10 a^{2} x^{2} + 1\right )}{128} + \frac {5 \operatorname {asin}{\left (a x \right )}}{128} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) - c^{4} \left (\begin {cases} \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {9}{2}}}{9} - \frac {3 \left (- a^{2} x^{2} + 1\right )^{\frac {7}{2}}}{7} + \frac {3 \left (- a^{2} x^{2} + 1\right )^{\frac {5}{2}}}{5} - \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{3} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right )}{a} & \text {for}\: a \neq 0 \\c^{4} x & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(-a**2*c*x**2+c)**4,x)

[Out]

Piecewise(((-c**4*(-a**2*x**2 + 1)**(3/2)/3 + c**4*Piecewise((a*x*sqrt(-a**2*x**2 + 1)/2 + asin(a*x)/2, (a*x >
 -1) & (a*x < 1))) - 3*c**4*Piecewise((-a*x*(-2*a**2*x**2 + 1)*sqrt(-a**2*x**2 + 1)/8 + asin(a*x)/8, (a*x > -1
) & (a*x < 1))) - 3*c**4*Piecewise(((-a**2*x**2 + 1)**(5/2)/5 - (-a**2*x**2 + 1)**(3/2)/3, (a*x > -1) & (a*x <
 1))) + 3*c**4*Piecewise((-a**3*x**3*(-a**2*x**2 + 1)**(3/2)/6 - a*x*(-2*a**2*x**2 + 1)*sqrt(-a**2*x**2 + 1)/1
6 + asin(a*x)/16, (a*x > -1) & (a*x < 1))) + 3*c**4*Piecewise((-(-a**2*x**2 + 1)**(7/2)/7 + 2*(-a**2*x**2 + 1)
**(5/2)/5 - (-a**2*x**2 + 1)**(3/2)/3, (a*x > -1) & (a*x < 1))) - c**4*Piecewise((-a**3*x**3*(-a**2*x**2 + 1)*
*(3/2)/6 - a*x*(-2*a**2*x**2 + 1)*sqrt(-a**2*x**2 + 1)/32 - a*x*sqrt(-a**2*x**2 + 1)*(-16*a**6*x**6 + 24*a**4*
x**4 - 10*a**2*x**2 + 1)/128 + 5*asin(a*x)/128, (a*x > -1) & (a*x < 1))) - c**4*Piecewise(((-a**2*x**2 + 1)**(
9/2)/9 - 3*(-a**2*x**2 + 1)**(7/2)/7 + 3*(-a**2*x**2 + 1)**(5/2)/5 - (-a**2*x**2 + 1)**(3/2)/3, (a*x > -1) & (
a*x < 1))))/a, Ne(a, 0)), (c**4*x, True))

________________________________________________________________________________________