3.86 \(\int \frac {e^{\frac {5}{2} \tanh ^{-1}(a x)}}{x^2} \, dx\)

Optimal. Leaf size=95 \[ -\frac {(a x+1)^{5/4}}{x \sqrt [4]{1-a x}}+\frac {10 a \sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}-5 a \tan ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-5 a \tanh ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

[Out]

10*a*(a*x+1)^(1/4)/(-a*x+1)^(1/4)-(a*x+1)^(5/4)/x/(-a*x+1)^(1/4)-5*a*arctan((a*x+1)^(1/4)/(-a*x+1)^(1/4))-5*a*
arctanh((a*x+1)^(1/4)/(-a*x+1)^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6126, 94, 93, 212, 206, 203} \[ -\frac {(a x+1)^{5/4}}{x \sqrt [4]{1-a x}}+\frac {10 a \sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}-5 a \tan ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-5 a \tanh ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^((5*ArcTanh[a*x])/2)/x^2,x]

[Out]

(10*a*(1 + a*x)^(1/4))/(1 - a*x)^(1/4) - (1 + a*x)^(5/4)/(x*(1 - a*x)^(1/4)) - 5*a*ArcTan[(1 + a*x)^(1/4)/(1 -
 a*x)^(1/4)] - 5*a*ArcTanh[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int \frac {e^{\frac {5}{2} \tanh ^{-1}(a x)}}{x^2} \, dx &=\int \frac {(1+a x)^{5/4}}{x^2 (1-a x)^{5/4}} \, dx\\ &=-\frac {(1+a x)^{5/4}}{x \sqrt [4]{1-a x}}+\frac {1}{2} (5 a) \int \frac {\sqrt [4]{1+a x}}{x (1-a x)^{5/4}} \, dx\\ &=\frac {10 a \sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}-\frac {(1+a x)^{5/4}}{x \sqrt [4]{1-a x}}+\frac {1}{2} (5 a) \int \frac {1}{x \sqrt [4]{1-a x} (1+a x)^{3/4}} \, dx\\ &=\frac {10 a \sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}-\frac {(1+a x)^{5/4}}{x \sqrt [4]{1-a x}}+(10 a) \operatorname {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=\frac {10 a \sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}-\frac {(1+a x)^{5/4}}{x \sqrt [4]{1-a x}}-(5 a) \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-(5 a) \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=\frac {10 a \sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}-\frac {(1+a x)^{5/4}}{x \sqrt [4]{1-a x}}-5 a \tan ^{-1}\left (\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-5 a \tanh ^{-1}\left (\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 74, normalized size = 0.78 \[ \frac {3 \left (9 a^2 x^2+8 a x-1\right )+10 a x (a x-1) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};\frac {1-a x}{a x+1}\right )}{3 x \sqrt [4]{1-a x} (a x+1)^{3/4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((5*ArcTanh[a*x])/2)/x^2,x]

[Out]

(3*(-1 + 8*a*x + 9*a^2*x^2) + 10*a*x*(-1 + a*x)*Hypergeometric2F1[3/4, 1, 7/4, (1 - a*x)/(1 + a*x)])/(3*x*(1 -
 a*x)^(1/4)*(1 + a*x)^(3/4))

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 125, normalized size = 1.32 \[ -\frac {10 \, a x \arctan \left (\sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}}\right ) + 5 \, a x \log \left (\sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) - 5 \, a x \log \left (\sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) - 2 \, {\left (9 \, a x - 1\right )} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}}}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x^2,x, algorithm="fricas")

[Out]

-1/2*(10*a*x*arctan(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))) + 5*a*x*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) + 1)
- 5*a*x*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) - 2*(9*a*x - 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)))/x

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(a*x-1)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )^{\frac {5}{2}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x^2,x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}\right )^{\frac {5}{2}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)/x^2,x, algorithm="maxima")

[Out]

integrate(((a*x + 1)/sqrt(-a^2*x^2 + 1))^(5/2)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}\right )}^{5/2}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(5/2)/x^2,x)

[Out]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(5/2)/x^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(5/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________