3.83 \(\int e^{\frac {5}{2} \tanh ^{-1}(a x)} x \, dx\)

Optimal. Leaf size=279 \[ \frac {2 (a x+1)^{9/4}}{a^2 \sqrt [4]{1-a x}}+\frac {5 (1-a x)^{3/4} (a x+1)^{5/4}}{2 a^2}+\frac {25 (1-a x)^{3/4} \sqrt [4]{a x+1}}{4 a^2}+\frac {25 \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{8 \sqrt {2} a^2}-\frac {25 \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{8 \sqrt {2} a^2}-\frac {25 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{4 \sqrt {2} a^2}+\frac {25 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{4 \sqrt {2} a^2} \]

[Out]

25/4*(-a*x+1)^(3/4)*(a*x+1)^(1/4)/a^2+5/2*(-a*x+1)^(3/4)*(a*x+1)^(5/4)/a^2+2*(a*x+1)^(9/4)/a^2/(-a*x+1)^(1/4)+
25/8*arctan(-1+(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4))/a^2*2^(1/2)+25/8*arctan(1+(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^
(1/4))/a^2*2^(1/2)+25/16*ln(1-(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4)+(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a^2*2^(1/2)-2
5/16*ln(1+(-a*x+1)^(1/4)*2^(1/2)/(a*x+1)^(1/4)+(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a^2*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 279, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 11, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.917, Rules used = {6126, 78, 50, 63, 331, 297, 1162, 617, 204, 1165, 628} \[ \frac {2 (a x+1)^{9/4}}{a^2 \sqrt [4]{1-a x}}+\frac {5 (1-a x)^{3/4} (a x+1)^{5/4}}{2 a^2}+\frac {25 (1-a x)^{3/4} \sqrt [4]{a x+1}}{4 a^2}+\frac {25 \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{8 \sqrt {2} a^2}-\frac {25 \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{8 \sqrt {2} a^2}-\frac {25 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{4 \sqrt {2} a^2}+\frac {25 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{4 \sqrt {2} a^2} \]

Antiderivative was successfully verified.

[In]

Int[E^((5*ArcTanh[a*x])/2)*x,x]

[Out]

(25*(1 - a*x)^(3/4)*(1 + a*x)^(1/4))/(4*a^2) + (5*(1 - a*x)^(3/4)*(1 + a*x)^(5/4))/(2*a^2) + (2*(1 + a*x)^(9/4
))/(a^2*(1 - a*x)^(1/4)) - (25*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(4*Sqrt[2]*a^2) + (25*Ar
cTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(4*Sqrt[2]*a^2) + (25*Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x]
 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(8*Sqrt[2]*a^2) - (25*Log[1 + Sqrt[1 - a*x]/Sqrt[1 + a*x] + (Sq
rt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(8*Sqrt[2]*a^2)

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int e^{\frac {5}{2} \tanh ^{-1}(a x)} x \, dx &=\int \frac {x (1+a x)^{5/4}}{(1-a x)^{5/4}} \, dx\\ &=\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}-\frac {5 \int \frac {(1+a x)^{5/4}}{\sqrt [4]{1-a x}} \, dx}{a}\\ &=\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}-\frac {25 \int \frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}} \, dx}{4 a}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}-\frac {25 \int \frac {1}{\sqrt [4]{1-a x} (1+a x)^{3/4}} \, dx}{8 a}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}+\frac {25 \operatorname {Subst}\left (\int \frac {x^2}{\left (2-x^4\right )^{3/4}} \, dx,x,\sqrt [4]{1-a x}\right )}{2 a^2}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}+\frac {25 \operatorname {Subst}\left (\int \frac {x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{2 a^2}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}-\frac {25 \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{4 a^2}+\frac {25 \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{4 a^2}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}+\frac {25 \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 a^2}+\frac {25 \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 a^2}+\frac {25 \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 \sqrt {2} a^2}+\frac {25 \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 \sqrt {2} a^2}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}+\frac {25 \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 \sqrt {2} a^2}-\frac {25 \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 \sqrt {2} a^2}+\frac {25 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{4 \sqrt {2} a^2}-\frac {25 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{4 \sqrt {2} a^2}\\ &=\frac {25 (1-a x)^{3/4} \sqrt [4]{1+a x}}{4 a^2}+\frac {5 (1-a x)^{3/4} (1+a x)^{5/4}}{2 a^2}+\frac {2 (1+a x)^{9/4}}{a^2 \sqrt [4]{1-a x}}-\frac {25 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{4 \sqrt {2} a^2}+\frac {25 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{4 \sqrt {2} a^2}+\frac {25 \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}-\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 \sqrt {2} a^2}-\frac {25 \log \left (1+\frac {\sqrt {1-a x}}{\sqrt {1+a x}}+\frac {\sqrt {2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{8 \sqrt {2} a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 61, normalized size = 0.22 \[ \frac {6 (a x+1)^{9/4}-40 \sqrt [4]{2} (a x-1) \, _2F_1\left (-\frac {5}{4},\frac {3}{4};\frac {7}{4};\frac {1}{2} (1-a x)\right )}{3 a^2 \sqrt [4]{1-a x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((5*ArcTanh[a*x])/2)*x,x]

[Out]

(6*(1 + a*x)^(9/4) - 40*2^(1/4)*(-1 + a*x)*Hypergeometric2F1[-5/4, 3/4, 7/4, (1 - a*x)/2])/(3*a^2*(1 - a*x)^(1
/4))

________________________________________________________________________________________

fricas [B]  time = 0.53, size = 537, normalized size = 1.92 \[ \frac {100 \, \sqrt {2} a^{2} \frac {1}{a^{8}}^{\frac {1}{4}} \arctan \left (\sqrt {2} a^{6} \sqrt {\frac {\sqrt {2} {\left (a^{3} x - a^{2}\right )} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {1}{4}} + {\left (a^{5} x - a^{4}\right )} \sqrt {\frac {1}{a^{8}}} - \sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {3}{4}} - \sqrt {2} a^{6} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {3}{4}} - 1\right ) + 100 \, \sqrt {2} a^{2} \frac {1}{a^{8}}^{\frac {1}{4}} \arctan \left (\sqrt {2} a^{6} \sqrt {-\frac {\sqrt {2} {\left (a^{3} x - a^{2}\right )} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {1}{4}} - {\left (a^{5} x - a^{4}\right )} \sqrt {\frac {1}{a^{8}}} + \sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {3}{4}} - \sqrt {2} a^{6} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {3}{4}} + 1\right ) - 25 \, \sqrt {2} a^{2} \frac {1}{a^{8}}^{\frac {1}{4}} \log \left (\frac {\sqrt {2} {\left (a^{3} x - a^{2}\right )} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {1}{4}} + {\left (a^{5} x - a^{4}\right )} \sqrt {\frac {1}{a^{8}}} - \sqrt {-a^{2} x^{2} + 1}}{a x - 1}\right ) + 25 \, \sqrt {2} a^{2} \frac {1}{a^{8}}^{\frac {1}{4}} \log \left (-\frac {\sqrt {2} {\left (a^{3} x - a^{2}\right )} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} \frac {1}{a^{8}}^{\frac {1}{4}} - {\left (a^{5} x - a^{4}\right )} \sqrt {\frac {1}{a^{8}}} + \sqrt {-a^{2} x^{2} + 1}}{a x - 1}\right ) - 4 \, {\left (2 \, a^{2} x^{2} + 9 \, a x - 43\right )} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}}}{16 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*x,x, algorithm="fricas")

[Out]

1/16*(100*sqrt(2)*a^2*(a^(-8))^(1/4)*arctan(sqrt(2)*a^6*sqrt((sqrt(2)*(a^3*x - a^2)*sqrt(-sqrt(-a^2*x^2 + 1)/(
a*x - 1))*(a^(-8))^(1/4) + (a^5*x - a^4)*sqrt(a^(-8)) - sqrt(-a^2*x^2 + 1))/(a*x - 1))*(a^(-8))^(3/4) - sqrt(2
)*a^6*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-8))^(3/4) - 1) + 100*sqrt(2)*a^2*(a^(-8))^(1/4)*arctan(sqrt(2)*
a^6*sqrt(-(sqrt(2)*(a^3*x - a^2)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-8))^(1/4) - (a^5*x - a^4)*sqrt(a^(-8
)) + sqrt(-a^2*x^2 + 1))/(a*x - 1))*(a^(-8))^(3/4) - sqrt(2)*a^6*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-8))^
(3/4) + 1) - 25*sqrt(2)*a^2*(a^(-8))^(1/4)*log((sqrt(2)*(a^3*x - a^2)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(
-8))^(1/4) + (a^5*x - a^4)*sqrt(a^(-8)) - sqrt(-a^2*x^2 + 1))/(a*x - 1)) + 25*sqrt(2)*a^2*(a^(-8))^(1/4)*log(-
(sqrt(2)*(a^3*x - a^2)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-8))^(1/4) - (a^5*x - a^4)*sqrt(a^(-8)) + sqrt(
-a^2*x^2 + 1))/(a*x - 1)) - 4*(2*a^2*x^2 + 9*a*x - 43)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)))/a^2

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(a*x-1)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.05, size = 0, normalized size = 0.00 \[ \int \left (\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )^{\frac {5}{2}} x\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*x,x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*x,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \left (\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*x,x, algorithm="maxima")

[Out]

integrate(x*((a*x + 1)/sqrt(-a^2*x^2 + 1))^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x\,{\left (\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*((a*x + 1)/(1 - a^2*x^2)^(1/2))^(5/2),x)

[Out]

int(x*((a*x + 1)/(1 - a^2*x^2)^(1/2))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(5/2)*x,x)

[Out]

Timed out

________________________________________________________________________________________