3.770 \(\int \frac {e^{-\tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx\)

Optimal. Leaf size=44 \[ -\frac {(1-a x)^2 \sqrt {c-\frac {c}{a^2 x^2}}}{2 x \sqrt {1-a^2 x^2}} \]

[Out]

-1/2*(-a*x+1)^2*(c-c/a^2/x^2)^(1/2)/x/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6160, 6150, 37} \[ -\frac {(1-a x)^2 \sqrt {c-\frac {c}{a^2 x^2}}}{2 x \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a^2*x^2)]/(E^ArcTanh[a*x]*x^2),x]

[Out]

-(Sqrt[c - c/(a^2*x^2)]*(1 - a*x)^2)/(2*x*Sqrt[1 - a^2*x^2])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6160

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/
(1 + (c*x^2)/d)^p, Int[(u*(1 + (c*x^2)/d)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] &
& EqQ[c + a^2*d, 0] &&  !IntegerQ[p] &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{-\tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{-\tanh ^{-1}(a x)} \sqrt {1-a^2 x^2}}{x^3} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1-a x}{x^3} \, dx}{\sqrt {1-a^2 x^2}}\\ &=-\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1-a x)^2}{2 x \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 44, normalized size = 1.00 \[ \frac {x \left (\frac {a}{x}-\frac {1}{2 x^2}\right ) \sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - c/(a^2*x^2)]/(E^ArcTanh[a*x]*x^2),x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(-1/2*1/x^2 + a/x)*x)/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

fricas [A]  time = 1.05, size = 63, normalized size = 1.43 \[ \frac {\sqrt {-a^{2} x^{2} + 1} {\left ({\left (2 \, a - 1\right )} x^{2} - 2 \, a x + 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{2 \, {\left (a^{2} x^{3} - x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="fricas")

[Out]

1/2*sqrt(-a^2*x^2 + 1)*((2*a - 1)*x^2 - 2*a*x + 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*x^3 - x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} x^{2} + 1} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{{\left (a x + 1\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*sqrt(c - c/(a^2*x^2))/((a*x + 1)*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 57, normalized size = 1.30 \[ -\frac {\left (2 a x -1\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \sqrt {-a^{2} x^{2}+1}}{2 \left (a x -1\right ) \left (a x +1\right ) x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a^2/x^2)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x)

[Out]

-1/2*(2*a*x-1)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(-a^2*x^2+1)^(1/2)/(a*x-1)/(a*x+1)/x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} x^{2} + 1} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{{\left (a x + 1\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*sqrt(c - c/(a^2*x^2))/((a*x + 1)*x^2), x)

________________________________________________________________________________________

mupad [B]  time = 0.96, size = 64, normalized size = 1.45 \[ -\frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (\frac {\sqrt {1-a^2\,x^2}}{2\,a^2}-\frac {x\,\sqrt {1-a^2\,x^2}}{a}\right )}{\frac {x}{a^2}-x^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a^2*x^2))^(1/2)*(1 - a^2*x^2)^(1/2))/(x^2*(a*x + 1)),x)

[Out]

-((c - c/(a^2*x^2))^(1/2)*((1 - a^2*x^2)^(1/2)/(2*a^2) - (x*(1 - a^2*x^2)^(1/2))/a))/(x/a^2 - x^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )}}{x^{2} \left (a x + 1\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a**2/x**2)**(1/2)/(a*x+1)*(-a**2*x**2+1)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))*sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))/(x**2*(a*x + 1)), x)

________________________________________________________________________________________