3.760 \(\int \frac {e^{3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx\)

Optimal. Leaf size=107 \[ -\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}+\frac {3 a x \log (x) \sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}-\frac {4 a x \sqrt {c-\frac {c}{a^2 x^2}} \log (1-a x)}{\sqrt {1-a^2 x^2}} \]

[Out]

-(c-c/a^2/x^2)^(1/2)/(-a^2*x^2+1)^(1/2)+3*a*x*ln(x)*(c-c/a^2/x^2)^(1/2)/(-a^2*x^2+1)^(1/2)-4*a*x*ln(-a*x+1)*(c
-c/a^2/x^2)^(1/2)/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6160, 6150, 88} \[ -\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}+\frac {3 a x \log (x) \sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}-\frac {4 a x \sqrt {c-\frac {c}{a^2 x^2}} \log (1-a x)}{\sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(3*ArcTanh[a*x])*Sqrt[c - c/(a^2*x^2)])/x,x]

[Out]

-(Sqrt[c - c/(a^2*x^2)]/Sqrt[1 - a^2*x^2]) + (3*a*Sqrt[c - c/(a^2*x^2)]*x*Log[x])/Sqrt[1 - a^2*x^2] - (4*a*Sqr
t[c - c/(a^2*x^2)]*x*Log[1 - a*x])/Sqrt[1 - a^2*x^2]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6160

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/
(1 + (c*x^2)/d)^p, Int[(u*(1 + (c*x^2)/d)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] &
& EqQ[c + a^2*d, 0] &&  !IntegerQ[p] &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{3 \tanh ^{-1}(a x)} \sqrt {1-a^2 x^2}}{x^2} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1+a x)^2}{x^2 (1-a x)} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \left (\frac {1}{x^2}+\frac {3 a}{x}-\frac {4 a^2}{-1+a x}\right ) \, dx}{\sqrt {1-a^2 x^2}}\\ &=-\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}+\frac {3 a \sqrt {c-\frac {c}{a^2 x^2}} x \log (x)}{\sqrt {1-a^2 x^2}}-\frac {4 a \sqrt {c-\frac {c}{a^2 x^2}} x \log (1-a x)}{\sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 49, normalized size = 0.46 \[ \frac {\sqrt {c-\frac {c}{a^2 x^2}} (3 a x \log (x)-4 a x \log (1-a x)-1)}{\sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(3*ArcTanh[a*x])*Sqrt[c - c/(a^2*x^2)])/x,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(-1 + 3*a*x*Log[x] - 4*a*x*Log[1 - a*x]))/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

fricas [F]  time = 1.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-a^{2} x^{2} + 1} {\left (a x + 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} x^{3} - 2 \, a x^{2} + x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*(a*x + 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*x^3 - 2*a*x^2 + x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )}^{3} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="giac")

[Out]

integrate((a*x + 1)^3*sqrt(c - c/(a^2*x^2))/((-a^2*x^2 + 1)^(3/2)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 63, normalized size = 0.59 \[ -\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \left (3 a \ln \relax (x ) x -4 \ln \left (a x -1\right ) x a -1\right ) \sqrt {-a^{2} x^{2}+1}}{a^{2} x^{2}-1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x)

[Out]

-(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(3*a*ln(x)*x-4*ln(a*x-1)*x*a-1)*(-a^2*x^2+1)^(1/2)/(a^2*x^2-1)

________________________________________________________________________________________

maxima [C]  time = 0.52, size = 144, normalized size = 1.35 \[ -\frac {1}{2} \, a^{3} {\left (-\frac {i \, \sqrt {c} \log \left (a x + 1\right )}{a^{3}} - \frac {i \, \sqrt {c} \log \left (a x - 1\right )}{a^{3}}\right )} - \frac {3}{2} \, a^{2} {\left (\frac {i \, \sqrt {c} \log \left (a x + 1\right )}{a^{2}} - \frac {i \, \sqrt {c} \log \left (a x - 1\right )}{a^{2}}\right )} - \frac {3}{2} \, a {\left (-\frac {i \, \sqrt {c} \log \left (a x + 1\right )}{a} - \frac {i \, \sqrt {c} \log \left (a x - 1\right )}{a} + \frac {2 i \, \sqrt {c} \log \relax (x)}{a}\right )} - \frac {1}{2} i \, \sqrt {c} \log \left (a x + 1\right ) + \frac {1}{2} i \, \sqrt {c} \log \left (a x - 1\right ) + \frac {i \, \sqrt {c}}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="maxima")

[Out]

-1/2*a^3*(-I*sqrt(c)*log(a*x + 1)/a^3 - I*sqrt(c)*log(a*x - 1)/a^3) - 3/2*a^2*(I*sqrt(c)*log(a*x + 1)/a^2 - I*
sqrt(c)*log(a*x - 1)/a^2) - 3/2*a*(-I*sqrt(c)*log(a*x + 1)/a - I*sqrt(c)*log(a*x - 1)/a + 2*I*sqrt(c)*log(x)/a
) - 1/2*I*sqrt(c)*log(a*x + 1) + 1/2*I*sqrt(c)*log(a*x - 1) + I*sqrt(c)/(a*x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,{\left (a\,x+1\right )}^3}{x\,{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a^2*x^2))^(1/2)*(a*x + 1)^3)/(x*(1 - a^2*x^2)^(3/2)),x)

[Out]

int(((c - c/(a^2*x^2))^(1/2)*(a*x + 1)^3)/(x*(1 - a^2*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x + 1\right )^{3}}{x \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(c-c/a**2/x**2)**(1/2)/x,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x + 1)**3/(x*(-(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________