3.76 \(\int \frac {e^{\frac {3}{2} \tanh ^{-1}(a x)}}{x^2} \, dx\)

Optimal. Leaf size=73 \[ -\frac {\sqrt [4]{1-a x} (a x+1)^{3/4}}{x}+3 a \tan ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-3 a \tanh ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

[Out]

-(-a*x+1)^(1/4)*(a*x+1)^(3/4)/x+3*a*arctan((a*x+1)^(1/4)/(-a*x+1)^(1/4))-3*a*arctanh((a*x+1)^(1/4)/(-a*x+1)^(1
/4))

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6126, 94, 93, 298, 203, 206} \[ -\frac {\sqrt [4]{1-a x} (a x+1)^{3/4}}{x}+3 a \tan ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right )-3 a \tanh ^{-1}\left (\frac {\sqrt [4]{a x+1}}{\sqrt [4]{1-a x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^((3*ArcTanh[a*x])/2)/x^2,x]

[Out]

-(((1 - a*x)^(1/4)*(1 + a*x)^(3/4))/x) + 3*a*ArcTan[(1 + a*x)^(1/4)/(1 - a*x)^(1/4)] - 3*a*ArcTanh[(1 + a*x)^(
1/4)/(1 - a*x)^(1/4)]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int \frac {e^{\frac {3}{2} \tanh ^{-1}(a x)}}{x^2} \, dx &=\int \frac {(1+a x)^{3/4}}{x^2 (1-a x)^{3/4}} \, dx\\ &=-\frac {\sqrt [4]{1-a x} (1+a x)^{3/4}}{x}+\frac {1}{2} (3 a) \int \frac {1}{x (1-a x)^{3/4} \sqrt [4]{1+a x}} \, dx\\ &=-\frac {\sqrt [4]{1-a x} (1+a x)^{3/4}}{x}+(6 a) \operatorname {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\frac {\sqrt [4]{1-a x} (1+a x)^{3/4}}{x}-(3 a) \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )+(3 a) \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ &=-\frac {\sqrt [4]{1-a x} (1+a x)^{3/4}}{x}+3 a \tan ^{-1}\left (\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )-3 a \tanh ^{-1}\left (\frac {\sqrt [4]{1+a x}}{\sqrt [4]{1-a x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 55, normalized size = 0.75 \[ -\frac {\sqrt [4]{1-a x} \left (6 a x \, _2F_1\left (\frac {1}{4},1;\frac {5}{4};\frac {1-a x}{a x+1}\right )+a x+1\right )}{x \sqrt [4]{a x+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((3*ArcTanh[a*x])/2)/x^2,x]

[Out]

-(((1 - a*x)^(1/4)*(1 + a*x + 6*a*x*Hypergeometric2F1[1/4, 1, 5/4, (1 - a*x)/(1 + a*x)]))/(x*(1 + a*x)^(1/4)))

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 131, normalized size = 1.79 \[ \frac {6 \, a x \arctan \left (\sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}}\right ) - 3 \, a x \log \left (\sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} + 1\right ) + 3 \, a x \log \left (\sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}} - 1\right ) - 2 \, \sqrt {-a^{2} x^{2} + 1} \sqrt {-\frac {\sqrt {-a^{2} x^{2} + 1}}{a x - 1}}}{2 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x^2,x, algorithm="fricas")

[Out]

1/2*(6*a*x*arctan(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))) - 3*a*x*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) + 1) +
3*a*x*log(sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)) - 1) - 2*sqrt(-a^2*x^2 + 1)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1)))
/x

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(a*x-1)]Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Th
e choice was done assuming [a,x]=[0,0]Warning, need to choose a branch for the root of a polynomial with param
eters. This might be wrong.The choice was done assuming [a,x]=[0,0]sym2poly/r2sym(const gen & e,const index_m
& i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.04, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x^2,x)

[Out]

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}\right )^{\frac {3}{2}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate(((a*x + 1)/sqrt(-a^2*x^2 + 1))^(3/2)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}\right )}^{3/2}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(3/2)/x^2,x)

[Out]

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(3/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{\sqrt {- a^{2} x^{2} + 1}}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(3/2)/x**2,x)

[Out]

Integral(((a*x + 1)/sqrt(-a**2*x**2 + 1))**(3/2)/x**2, x)

________________________________________________________________________________________