3.745 \(\int \frac {e^{\tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx\)

Optimal. Leaf size=66 \[ \frac {a x \log (x) \sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}-\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}} \]

[Out]

-(c-c/a^2/x^2)^(1/2)/(-a^2*x^2+1)^(1/2)+a*x*ln(x)*(c-c/a^2/x^2)^(1/2)/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6160, 6150, 43} \[ \frac {a x \log (x) \sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}-\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*Sqrt[c - c/(a^2*x^2)])/x,x]

[Out]

-(Sqrt[c - c/(a^2*x^2)]/Sqrt[1 - a^2*x^2]) + (a*Sqrt[c - c/(a^2*x^2)]*x*Log[x])/Sqrt[1 - a^2*x^2]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6160

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/
(1 + (c*x^2)/d)^p, Int[(u*(1 + (c*x^2)/d)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] &
& EqQ[c + a^2*d, 0] &&  !IntegerQ[p] &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{\tanh ^{-1}(a x)} \sqrt {1-a^2 x^2}}{x^2} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1+a x}{x^2} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \left (\frac {1}{x^2}+\frac {a}{x}\right ) \, dx}{\sqrt {1-a^2 x^2}}\\ &=-\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-a^2 x^2}}+\frac {a \sqrt {c-\frac {c}{a^2 x^2}} x \log (x)}{\sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 37, normalized size = 0.56 \[ \frac {\sqrt {c-\frac {c}{a^2 x^2}} (a x \log (x)-1)}{\sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcTanh[a*x]*Sqrt[c - c/(a^2*x^2)])/x,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(-1 + a*x*Log[x]))/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

fricas [B]  time = 0.88, size = 294, normalized size = 4.45 \[ \left [\frac {{\left (a^{2} x^{2} - 1\right )} \sqrt {-c} \log \left (\frac {a^{2} c x^{6} + a^{2} c x^{2} - c x^{4} + {\left (a x^{5} - a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - c}{a^{2} x^{4} - x^{2}}\right ) - 2 \, \sqrt {-a^{2} x^{2} + 1} {\left (x - 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{2 \, {\left (a^{2} x^{2} - 1\right )}}, -\frac {{\left (a^{2} x^{2} - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} {\left (a x^{3} + a x\right )} \sqrt {c} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{4} - {\left (a^{2} + 1\right )} c x^{2} + c}\right ) + \sqrt {-a^{2} x^{2} + 1} {\left (x - 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} x^{2} - 1}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/2*((a^2*x^2 - 1)*sqrt(-c)*log((a^2*c*x^6 + a^2*c*x^2 - c*x^4 + (a*x^5 - a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sq
rt((a^2*c*x^2 - c)/(a^2*x^2)) - c)/(a^2*x^4 - x^2)) - 2*sqrt(-a^2*x^2 + 1)*(x - 1)*sqrt((a^2*c*x^2 - c)/(a^2*x
^2)))/(a^2*x^2 - 1), -((a^2*x^2 - 1)*sqrt(c)*arctan(sqrt(-a^2*x^2 + 1)*(a*x^3 + a*x)*sqrt(c)*sqrt((a^2*c*x^2 -
 c)/(a^2*x^2))/(a^2*c*x^4 - (a^2 + 1)*c*x^2 + c)) + sqrt(-a^2*x^2 + 1)*(x - 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2))
)/(a^2*x^2 - 1)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{\sqrt {-a^{2} x^{2} + 1} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="giac")

[Out]

integrate((a*x + 1)*sqrt(c - c/(a^2*x^2))/(sqrt(-a^2*x^2 + 1)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 52, normalized size = 0.79 \[ -\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \left (a \ln \relax (x ) x -1\right ) \sqrt {-a^{2} x^{2}+1}}{a^{2} x^{2}-1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a^2/x^2)^(1/2)/x,x)

[Out]

-(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(a*ln(x)*x-1)*(-a^2*x^2+1)^(1/2)/(a^2*x^2-1)

________________________________________________________________________________________

maxima [C]  time = 0.38, size = 19, normalized size = 0.29 \[ -i \, \sqrt {c} \log \relax (x) + \frac {i \, \sqrt {c}}{a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="maxima")

[Out]

-I*sqrt(c)*log(x) + I*sqrt(c)/(a*x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x+1\right )}{x\,\sqrt {1-a^2\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a^2*x^2))^(1/2)*(a*x + 1))/(x*(1 - a^2*x^2)^(1/2)),x)

[Out]

int(((c - c/(a^2*x^2))^(1/2)*(a*x + 1))/(x*(1 - a^2*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x + 1\right )}{x \sqrt {- \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(c-c/a**2/x**2)**(1/2)/x,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x + 1)/(x*sqrt(-(a*x - 1)*(a*x + 1))), x)

________________________________________________________________________________________