3.713 \(\int \frac {e^{3 \tanh ^{-1}(a x)}}{(c-\frac {c}{a^2 x^2})^{7/2}} \, dx\)

Optimal. Leaf size=363 \[ -\frac {75 \left (1-a^2 x^2\right )^{7/2}}{16 a^8 x^7 (1-a x) \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {\left (1-a^2 x^2\right )^{7/2}}{32 a^8 x^7 (a x+1) \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {59 \left (1-a^2 x^2\right )^{7/2}}{32 a^8 x^7 (1-a x)^2 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}-\frac {\left (1-a^2 x^2\right )^{7/2}}{2 a^8 x^7 (1-a x)^3 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {\left (1-a^2 x^2\right )^{7/2}}{16 a^8 x^7 (1-a x)^4 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}-\frac {201 \left (1-a^2 x^2\right )^{7/2} \log (1-a x)}{64 a^8 x^7 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {9 \left (1-a^2 x^2\right )^{7/2} \log (a x+1)}{64 a^8 x^7 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}-\frac {\left (1-a^2 x^2\right )^{7/2}}{a^7 x^6 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}} \]

[Out]

-(-a^2*x^2+1)^(7/2)/a^7/(c-c/a^2/x^2)^(7/2)/x^6+1/16*(-a^2*x^2+1)^(7/2)/a^8/(c-c/a^2/x^2)^(7/2)/x^7/(-a*x+1)^4
-1/2*(-a^2*x^2+1)^(7/2)/a^8/(c-c/a^2/x^2)^(7/2)/x^7/(-a*x+1)^3+59/32*(-a^2*x^2+1)^(7/2)/a^8/(c-c/a^2/x^2)^(7/2
)/x^7/(-a*x+1)^2-75/16*(-a^2*x^2+1)^(7/2)/a^8/(c-c/a^2/x^2)^(7/2)/x^7/(-a*x+1)+1/32*(-a^2*x^2+1)^(7/2)/a^8/(c-
c/a^2/x^2)^(7/2)/x^7/(a*x+1)-201/64*(-a^2*x^2+1)^(7/2)*ln(-a*x+1)/a^8/(c-c/a^2/x^2)^(7/2)/x^7+9/64*(-a^2*x^2+1
)^(7/2)*ln(a*x+1)/a^8/(c-c/a^2/x^2)^(7/2)/x^7

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 363, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6160, 6150, 88} \[ -\frac {75 \left (1-a^2 x^2\right )^{7/2}}{16 a^8 x^7 (1-a x) \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {\left (1-a^2 x^2\right )^{7/2}}{32 a^8 x^7 (a x+1) \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {59 \left (1-a^2 x^2\right )^{7/2}}{32 a^8 x^7 (1-a x)^2 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}-\frac {\left (1-a^2 x^2\right )^{7/2}}{2 a^8 x^7 (1-a x)^3 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {\left (1-a^2 x^2\right )^{7/2}}{16 a^8 x^7 (1-a x)^4 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}-\frac {\left (1-a^2 x^2\right )^{7/2}}{a^7 x^6 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}-\frac {201 \left (1-a^2 x^2\right )^{7/2} \log (1-a x)}{64 a^8 x^7 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}}+\frac {9 \left (1-a^2 x^2\right )^{7/2} \log (a x+1)}{64 a^8 x^7 \left (c-\frac {c}{a^2 x^2}\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])/(c - c/(a^2*x^2))^(7/2),x]

[Out]

-((1 - a^2*x^2)^(7/2)/(a^7*(c - c/(a^2*x^2))^(7/2)*x^6)) + (1 - a^2*x^2)^(7/2)/(16*a^8*(c - c/(a^2*x^2))^(7/2)
*x^7*(1 - a*x)^4) - (1 - a^2*x^2)^(7/2)/(2*a^8*(c - c/(a^2*x^2))^(7/2)*x^7*(1 - a*x)^3) + (59*(1 - a^2*x^2)^(7
/2))/(32*a^8*(c - c/(a^2*x^2))^(7/2)*x^7*(1 - a*x)^2) - (75*(1 - a^2*x^2)^(7/2))/(16*a^8*(c - c/(a^2*x^2))^(7/
2)*x^7*(1 - a*x)) + (1 - a^2*x^2)^(7/2)/(32*a^8*(c - c/(a^2*x^2))^(7/2)*x^7*(1 + a*x)) - (201*(1 - a^2*x^2)^(7
/2)*Log[1 - a*x])/(64*a^8*(c - c/(a^2*x^2))^(7/2)*x^7) + (9*(1 - a^2*x^2)^(7/2)*Log[1 + a*x])/(64*a^8*(c - c/(
a^2*x^2))^(7/2)*x^7)

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6160

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(x^(2*p)*(c + d/x^2)^p)/
(1 + (c*x^2)/d)^p, Int[(u*(1 + (c*x^2)/d)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] &
& EqQ[c + a^2*d, 0] &&  !IntegerQ[p] &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{3 \tanh ^{-1}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^{7/2}} \, dx &=\frac {\left (1-a^2 x^2\right )^{7/2} \int \frac {e^{3 \tanh ^{-1}(a x)} x^7}{\left (1-a^2 x^2\right )^{7/2}} \, dx}{\left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7}\\ &=\frac {\left (1-a^2 x^2\right )^{7/2} \int \frac {x^7}{(1-a x)^5 (1+a x)^2} \, dx}{\left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7}\\ &=\frac {\left (1-a^2 x^2\right )^{7/2} \int \left (-\frac {1}{a^7}-\frac {1}{4 a^7 (-1+a x)^5}-\frac {3}{2 a^7 (-1+a x)^4}-\frac {59}{16 a^7 (-1+a x)^3}-\frac {75}{16 a^7 (-1+a x)^2}-\frac {201}{64 a^7 (-1+a x)}-\frac {1}{32 a^7 (1+a x)^2}+\frac {9}{64 a^7 (1+a x)}\right ) \, dx}{\left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7}\\ &=-\frac {\left (1-a^2 x^2\right )^{7/2}}{a^7 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^6}+\frac {\left (1-a^2 x^2\right )^{7/2}}{16 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7 (1-a x)^4}-\frac {\left (1-a^2 x^2\right )^{7/2}}{2 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7 (1-a x)^3}+\frac {59 \left (1-a^2 x^2\right )^{7/2}}{32 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7 (1-a x)^2}-\frac {75 \left (1-a^2 x^2\right )^{7/2}}{16 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7 (1-a x)}+\frac {\left (1-a^2 x^2\right )^{7/2}}{32 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7 (1+a x)}-\frac {201 \left (1-a^2 x^2\right )^{7/2} \log (1-a x)}{64 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7}+\frac {9 \left (1-a^2 x^2\right )^{7/2} \log (1+a x)}{64 a^8 \left (c-\frac {c}{a^2 x^2}\right )^{7/2} x^7}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 146, normalized size = 0.40 \[ \frac {\sqrt {1-a^2 x^2} \left (2 \left (32 a^6 x^6-96 a^5 x^5-87 a^4 x^4+309 a^3 x^3-59 a^2 x^2-207 a x+104\right )+201 (a x+1) (a x-1)^4 \log (1-a x)-9 (a x+1) (a x-1)^4 \log (a x+1)\right )}{64 a^2 c^3 x (a x-1)^4 (a x+1) \sqrt {c-\frac {c}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a*x])/(c - c/(a^2*x^2))^(7/2),x]

[Out]

(Sqrt[1 - a^2*x^2]*(2*(104 - 207*a*x - 59*a^2*x^2 + 309*a^3*x^3 - 87*a^4*x^4 - 96*a^5*x^5 + 32*a^6*x^6) + 201*
(-1 + a*x)^4*(1 + a*x)*Log[1 - a*x] - 9*(-1 + a*x)^4*(1 + a*x)*Log[1 + a*x]))/(64*a^2*c^3*Sqrt[c - c/(a^2*x^2)
]*x*(-1 + a*x)^4*(1 + a*x))

________________________________________________________________________________________

fricas [F]  time = 2.79, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-a^{2} x^{2} + 1} a^{8} x^{8} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{9} c^{4} x^{9} - 3 \, a^{8} c^{4} x^{8} + 8 \, a^{6} c^{4} x^{6} - 6 \, a^{5} c^{4} x^{5} - 6 \, a^{4} c^{4} x^{4} + 8 \, a^{3} c^{4} x^{3} - 3 \, a c^{4} x + c^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*a^8*x^8*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^9*c^4*x^9 - 3*a^8*c^4*x^8 + 8*a^6*c^4*x
^6 - 6*a^5*c^4*x^5 - 6*a^4*c^4*x^4 + 8*a^3*c^4*x^3 - 3*a*c^4*x + c^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^(7/2),x, algorithm="giac")

[Out]

integrate((a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*(c - c/(a^2*x^2))^(7/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 248, normalized size = 0.68 \[ \frac {\sqrt {-a^{2} x^{2}+1}\, \left (a x +1\right )^{2} \left (64 x^{6} a^{6}+201 \ln \left (a x -1\right ) x^{5} a^{5}-9 \ln \left (a x +1\right ) x^{5} a^{5}-192 x^{5} a^{5}-603 \ln \left (a x -1\right ) x^{4} a^{4}+27 \ln \left (a x +1\right ) x^{4} a^{4}-174 x^{4} a^{4}+402 \ln \left (a x -1\right ) x^{3} a^{3}-18 a^{3} x^{3} \ln \left (a x +1\right )+618 x^{3} a^{3}+402 \ln \left (a x -1\right ) x^{2} a^{2}-18 \ln \left (a x +1\right ) x^{2} a^{2}-118 a^{2} x^{2}-603 \ln \left (a x -1\right ) x a +27 a x \ln \left (a x +1\right )-414 a x +201 \ln \left (a x -1\right )-9 \ln \left (a x +1\right )+208\right )}{64 \left (a x -1\right ) a^{8} x^{7} \left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}\right )^{\frac {7}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^(7/2),x)

[Out]

1/64*(-a^2*x^2+1)^(1/2)*(a*x+1)^2*(64*x^6*a^6+201*ln(a*x-1)*x^5*a^5-9*ln(a*x+1)*x^5*a^5-192*x^5*a^5-603*ln(a*x
-1)*x^4*a^4+27*ln(a*x+1)*x^4*a^4-174*x^4*a^4+402*ln(a*x-1)*x^3*a^3-18*a^3*x^3*ln(a*x+1)+618*x^3*a^3+402*ln(a*x
-1)*x^2*a^2-18*ln(a*x+1)*x^2*a^2-118*a^2*x^2-603*ln(a*x-1)*x*a+27*a*x*ln(a*x+1)-414*a*x+201*ln(a*x-1)-9*ln(a*x
+1)+208)/(a*x-1)/a^8/x^7/(c*(a^2*x^2-1)/a^2/x^2)^(7/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*(c - c/(a^2*x^2))^(7/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a\,x+1\right )}^3}{{\left (c-\frac {c}{a^2\,x^2}\right )}^{7/2}\,{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + 1)^3/((c - c/(a^2*x^2))^(7/2)*(1 - a^2*x^2)^(3/2)),x)

[Out]

int((a*x + 1)^3/((c - c/(a^2*x^2))^(7/2)*(1 - a^2*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}} \left (- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)/(c-c/a**2/x**2)**(7/2),x)

[Out]

Integral((a*x + 1)**3/((-(a*x - 1)*(a*x + 1))**(3/2)*(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))**(7/2)), x)

________________________________________________________________________________________