3.654 \(\int e^{4 \tanh ^{-1}(a x)} (c-\frac {c}{a^2 x^2})^4 \, dx\)

Optimal. Leaf size=100 \[ -\frac {c^4}{7 a^8 x^7}-\frac {2 c^4}{3 a^7 x^6}-\frac {4 c^4}{5 a^6 x^5}+\frac {c^4}{a^5 x^4}+\frac {10 c^4}{3 a^4 x^3}+\frac {2 c^4}{a^3 x^2}-\frac {4 c^4}{a^2 x}+\frac {4 c^4 \log (x)}{a}+c^4 x \]

[Out]

-1/7*c^4/a^8/x^7-2/3*c^4/a^7/x^6-4/5*c^4/a^6/x^5+c^4/a^5/x^4+10/3*c^4/a^4/x^3+2*c^4/a^3/x^2-4*c^4/a^2/x+c^4*x+
4*c^4*ln(x)/a

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6157, 6150, 88} \[ \frac {2 c^4}{a^3 x^2}+\frac {10 c^4}{3 a^4 x^3}+\frac {c^4}{a^5 x^4}-\frac {4 c^4}{5 a^6 x^5}-\frac {2 c^4}{3 a^7 x^6}-\frac {c^4}{7 a^8 x^7}-\frac {4 c^4}{a^2 x}+\frac {4 c^4 \log (x)}{a}+c^4 x \]

Antiderivative was successfully verified.

[In]

Int[E^(4*ArcTanh[a*x])*(c - c/(a^2*x^2))^4,x]

[Out]

-c^4/(7*a^8*x^7) - (2*c^4)/(3*a^7*x^6) - (4*c^4)/(5*a^6*x^5) + c^4/(a^5*x^4) + (10*c^4)/(3*a^4*x^3) + (2*c^4)/
(a^3*x^2) - (4*c^4)/(a^2*x) + c^4*x + (4*c^4*Log[x])/a

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6157

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[(u*(1 - a^2*x^
2)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int e^{4 \tanh ^{-1}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^4 \, dx &=\frac {c^4 \int \frac {e^{4 \tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^4}{x^8} \, dx}{a^8}\\ &=\frac {c^4 \int \frac {(1-a x)^2 (1+a x)^6}{x^8} \, dx}{a^8}\\ &=\frac {c^4 \int \left (a^8+\frac {1}{x^8}+\frac {4 a}{x^7}+\frac {4 a^2}{x^6}-\frac {4 a^3}{x^5}-\frac {10 a^4}{x^4}-\frac {4 a^5}{x^3}+\frac {4 a^6}{x^2}+\frac {4 a^7}{x}\right ) \, dx}{a^8}\\ &=-\frac {c^4}{7 a^8 x^7}-\frac {2 c^4}{3 a^7 x^6}-\frac {4 c^4}{5 a^6 x^5}+\frac {c^4}{a^5 x^4}+\frac {10 c^4}{3 a^4 x^3}+\frac {2 c^4}{a^3 x^2}-\frac {4 c^4}{a^2 x}+c^4 x+\frac {4 c^4 \log (x)}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 100, normalized size = 1.00 \[ -\frac {c^4}{7 a^8 x^7}-\frac {2 c^4}{3 a^7 x^6}-\frac {4 c^4}{5 a^6 x^5}+\frac {c^4}{a^5 x^4}+\frac {10 c^4}{3 a^4 x^3}+\frac {2 c^4}{a^3 x^2}-\frac {4 c^4}{a^2 x}+\frac {4 c^4 \log (x)}{a}+c^4 x \]

Antiderivative was successfully verified.

[In]

Integrate[E^(4*ArcTanh[a*x])*(c - c/(a^2*x^2))^4,x]

[Out]

-1/7*c^4/(a^8*x^7) - (2*c^4)/(3*a^7*x^6) - (4*c^4)/(5*a^6*x^5) + c^4/(a^5*x^4) + (10*c^4)/(3*a^4*x^3) + (2*c^4
)/(a^3*x^2) - (4*c^4)/(a^2*x) + c^4*x + (4*c^4*Log[x])/a

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 100, normalized size = 1.00 \[ \frac {105 \, a^{8} c^{4} x^{8} + 420 \, a^{7} c^{4} x^{7} \log \relax (x) - 420 \, a^{6} c^{4} x^{6} + 210 \, a^{5} c^{4} x^{5} + 350 \, a^{4} c^{4} x^{4} + 105 \, a^{3} c^{4} x^{3} - 84 \, a^{2} c^{4} x^{2} - 70 \, a c^{4} x - 15 \, c^{4}}{105 \, a^{8} x^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^4,x, algorithm="fricas")

[Out]

1/105*(105*a^8*c^4*x^8 + 420*a^7*c^4*x^7*log(x) - 420*a^6*c^4*x^6 + 210*a^5*c^4*x^5 + 350*a^4*c^4*x^4 + 105*a^
3*c^4*x^3 - 84*a^2*c^4*x^2 - 70*a*c^4*x - 15*c^4)/(a^8*x^7)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 93, normalized size = 0.93 \[ c^{4} x + \frac {4 \, c^{4} \log \left ({\left | x \right |}\right )}{a} - \frac {420 \, a^{6} c^{4} x^{6} - 210 \, a^{5} c^{4} x^{5} - 350 \, a^{4} c^{4} x^{4} - 105 \, a^{3} c^{4} x^{3} + 84 \, a^{2} c^{4} x^{2} + 70 \, a c^{4} x + 15 \, c^{4}}{105 \, a^{8} x^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^4,x, algorithm="giac")

[Out]

c^4*x + 4*c^4*log(abs(x))/a - 1/105*(420*a^6*c^4*x^6 - 210*a^5*c^4*x^5 - 350*a^4*c^4*x^4 - 105*a^3*c^4*x^3 + 8
4*a^2*c^4*x^2 + 70*a*c^4*x + 15*c^4)/(a^8*x^7)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 93, normalized size = 0.93 \[ -\frac {c^{4}}{7 a^{8} x^{7}}-\frac {2 c^{4}}{3 a^{7} x^{6}}-\frac {4 c^{4}}{5 a^{6} x^{5}}+\frac {c^{4}}{a^{5} x^{4}}+\frac {10 c^{4}}{3 a^{4} x^{3}}+\frac {2 c^{4}}{x^{2} a^{3}}-\frac {4 c^{4}}{a^{2} x}+c^{4} x +\frac {4 c^{4} \ln \relax (x )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^4,x)

[Out]

-1/7*c^4/a^8/x^7-2/3*c^4/a^7/x^6-4/5*c^4/a^6/x^5+c^4/a^5/x^4+10/3*c^4/a^4/x^3+2*c^4/x^2/a^3-4*c^4/a^2/x+c^4*x+
4*c^4*ln(x)/a

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 92, normalized size = 0.92 \[ c^{4} x + \frac {4 \, c^{4} \log \relax (x)}{a} - \frac {420 \, a^{6} c^{4} x^{6} - 210 \, a^{5} c^{4} x^{5} - 350 \, a^{4} c^{4} x^{4} - 105 \, a^{3} c^{4} x^{3} + 84 \, a^{2} c^{4} x^{2} + 70 \, a c^{4} x + 15 \, c^{4}}{105 \, a^{8} x^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^4/(-a^2*x^2+1)^2*(c-c/a^2/x^2)^4,x, algorithm="maxima")

[Out]

c^4*x + 4*c^4*log(x)/a - 1/105*(420*a^6*c^4*x^6 - 210*a^5*c^4*x^5 - 350*a^4*c^4*x^4 - 105*a^3*c^4*x^3 + 84*a^2
*c^4*x^2 + 70*a*c^4*x + 15*c^4)/(a^8*x^7)

________________________________________________________________________________________

mupad [B]  time = 0.86, size = 72, normalized size = 0.72 \[ \frac {c^4\,\left (a^3\,x^3-\frac {4\,a^2\,x^2}{5}-\frac {2\,a\,x}{3}+\frac {10\,a^4\,x^4}{3}+2\,a^5\,x^5-4\,a^6\,x^6+a^8\,x^8+4\,a^7\,x^7\,\ln \relax (x)-\frac {1}{7}\right )}{a^8\,x^7} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a^2*x^2))^4*(a*x + 1)^4)/(a^2*x^2 - 1)^2,x)

[Out]

(c^4*(a^3*x^3 - (4*a^2*x^2)/5 - (2*a*x)/3 + (10*a^4*x^4)/3 + 2*a^5*x^5 - 4*a^6*x^6 + a^8*x^8 + 4*a^7*x^7*log(x
) - 1/7))/(a^8*x^7)

________________________________________________________________________________________

sympy [A]  time = 0.51, size = 100, normalized size = 1.00 \[ \frac {a^{8} c^{4} x + 4 a^{7} c^{4} \log {\relax (x )} + \frac {- 420 a^{6} c^{4} x^{6} + 210 a^{5} c^{4} x^{5} + 350 a^{4} c^{4} x^{4} + 105 a^{3} c^{4} x^{3} - 84 a^{2} c^{4} x^{2} - 70 a c^{4} x - 15 c^{4}}{105 x^{7}}}{a^{8}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**4/(-a**2*x**2+1)**2*(c-c/a**2/x**2)**4,x)

[Out]

(a**8*c**4*x + 4*a**7*c**4*log(x) + (-420*a**6*c**4*x**6 + 210*a**5*c**4*x**5 + 350*a**4*c**4*x**4 + 105*a**3*
c**4*x**3 - 84*a**2*c**4*x**2 - 70*a*c**4*x - 15*c**4)/(105*x**7))/a**8

________________________________________________________________________________________