3.639 \(\int e^{2 \tanh ^{-1}(a x)} (c-\frac {c}{a^2 x^2})^2 \, dx\)

Optimal. Leaf size=41 \[ -\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-\frac {2 c^2 \log (x)}{a}+c^2 (-x) \]

[Out]

-1/3*c^2/a^4/x^3-c^2/a^3/x^2-c^2*x-2*c^2*ln(x)/a

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6157, 6150, 75} \[ -\frac {c^2}{a^3 x^2}-\frac {c^2}{3 a^4 x^3}-\frac {2 c^2 \log (x)}{a}+c^2 (-x) \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])*(c - c/(a^2*x^2))^2,x]

[Out]

-c^2/(3*a^4*x^3) - c^2/(a^3*x^2) - c^2*x - (2*c^2*Log[x])/a

Rule 75

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6157

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[(u*(1 - a^2*x^
2)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int e^{2 \tanh ^{-1}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^2 \, dx &=\frac {c^2 \int \frac {e^{2 \tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^2}{x^4} \, dx}{a^4}\\ &=\frac {c^2 \int \frac {(1-a x) (1+a x)^3}{x^4} \, dx}{a^4}\\ &=\frac {c^2 \int \left (-a^4+\frac {1}{x^4}+\frac {2 a}{x^3}-\frac {2 a^3}{x}\right ) \, dx}{a^4}\\ &=-\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-c^2 x-\frac {2 c^2 \log (x)}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 41, normalized size = 1.00 \[ -\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-\frac {2 c^2 \log (x)}{a}+c^2 (-x) \]

Antiderivative was successfully verified.

[In]

Integrate[E^(2*ArcTanh[a*x])*(c - c/(a^2*x^2))^2,x]

[Out]

-1/3*c^2/(a^4*x^3) - c^2/(a^3*x^2) - c^2*x - (2*c^2*Log[x])/a

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 43, normalized size = 1.05 \[ -\frac {3 \, a^{4} c^{2} x^{4} + 6 \, a^{3} c^{2} x^{3} \log \relax (x) + 3 \, a c^{2} x + c^{2}}{3 \, a^{4} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x, algorithm="fricas")

[Out]

-1/3*(3*a^4*c^2*x^4 + 6*a^3*c^2*x^3*log(x) + 3*a*c^2*x + c^2)/(a^4*x^3)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 37, normalized size = 0.90 \[ -c^{2} x - \frac {2 \, c^{2} \log \left ({\left | x \right |}\right )}{a} - \frac {3 \, a c^{2} x + c^{2}}{3 \, a^{4} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x, algorithm="giac")

[Out]

-c^2*x - 2*c^2*log(abs(x))/a - 1/3*(3*a*c^2*x + c^2)/(a^4*x^3)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 40, normalized size = 0.98 \[ -\frac {c^{2}}{3 a^{4} x^{3}}-\frac {c^{2}}{x^{2} a^{3}}-c^{2} x -\frac {2 c^{2} \ln \relax (x )}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x)

[Out]

-1/3*c^2/a^4/x^3-c^2/x^2/a^3-c^2*x-2*c^2*ln(x)/a

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 36, normalized size = 0.88 \[ -c^{2} x - \frac {2 \, c^{2} \log \relax (x)}{a} - \frac {3 \, a c^{2} x + c^{2}}{3 \, a^{4} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x, algorithm="maxima")

[Out]

-c^2*x - 2*c^2*log(x)/a - 1/3*(3*a*c^2*x + c^2)/(a^4*x^3)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 35, normalized size = 0.85 \[ -\frac {c^2\,\left (3\,a\,x+3\,a^4\,x^4+6\,a^3\,x^3\,\ln \relax (x)+1\right )}{3\,a^4\,x^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((c - c/(a^2*x^2))^2*(a*x + 1)^2)/(a^2*x^2 - 1),x)

[Out]

-(c^2*(3*a*x + 3*a^4*x^4 + 6*a^3*x^3*log(x) + 1))/(3*a^4*x^3)

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 41, normalized size = 1.00 \[ \frac {- a^{4} c^{2} x - 2 a^{3} c^{2} \log {\relax (x )} - \frac {3 a c^{2} x + c^{2}}{3 x^{3}}}{a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(c-c/a**2/x**2)**2,x)

[Out]

(-a**4*c**2*x - 2*a**3*c**2*log(x) - (3*a*c**2*x + c**2)/(3*x**3))/a**4

________________________________________________________________________________________