3.627 \(\int \frac {e^{n \tanh ^{-1}(a x)}}{(c-\frac {c}{a x})^{3/2}} \, dx\)

Optimal. Leaf size=56 \[ \frac {2 x (1-a x)^{3/2} F_1\left (\frac {5}{2};\frac {n+3}{2},-\frac {n}{2};\frac {7}{2};a x,-a x\right )}{5 \left (c-\frac {c}{a x}\right )^{3/2}} \]

[Out]

2/5*x*(-a*x+1)^(3/2)*AppellF1(5/2,3/2+1/2*n,-1/2*n,7/2,a*x,-a*x)/(c-c/a/x)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6134, 6129, 133} \[ \frac {2 x (1-a x)^{3/2} F_1\left (\frac {5}{2};\frac {n+3}{2},-\frac {n}{2};\frac {7}{2};a x,-a x\right )}{5 \left (c-\frac {c}{a x}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcTanh[a*x])/(c - c/(a*x))^(3/2),x]

[Out]

(2*x*(1 - a*x)^(3/2)*AppellF1[5/2, (3 + n)/2, -n/2, 7/2, a*x, -(a*x)])/(5*(c - c/(a*x))^(3/2))

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6134

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(x^p*(c + d/x)^p)/(1 + (c*
x)/d)^p, Int[(u*(1 + (c*x)/d)^p*E^(n*ArcTanh[a*x]))/x^p, x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {e^{n \tanh ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx &=\frac {(1-a x)^{3/2} \int \frac {e^{n \tanh ^{-1}(a x)} x^{3/2}}{(1-a x)^{3/2}} \, dx}{\left (c-\frac {c}{a x}\right )^{3/2} x^{3/2}}\\ &=\frac {(1-a x)^{3/2} \int x^{3/2} (1-a x)^{-\frac {3}{2}-\frac {n}{2}} (1+a x)^{n/2} \, dx}{\left (c-\frac {c}{a x}\right )^{3/2} x^{3/2}}\\ &=\frac {2 x (1-a x)^{3/2} F_1\left (\frac {5}{2};\frac {3+n}{2},-\frac {n}{2};\frac {7}{2};a x,-a x\right )}{5 \left (c-\frac {c}{a x}\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 180.01, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[E^(n*ArcTanh[a*x])/(c - c/(a*x))^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 0.56, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{2} x^{2} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \sqrt {\frac {a c x - c}{a x}}}{a^{2} c^{2} x^{2} - 2 \, a c^{2} x + c^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/(c-c/a/x)^(3/2),x, algorithm="fricas")

[Out]

integral(a^2*x^2*((a*x + 1)/(a*x - 1))^(1/2*n)*sqrt((a*c*x - c)/(a*x))/(a^2*c^2*x^2 - 2*a*c^2*x + c^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{{\left (c - \frac {c}{a x}\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/(c-c/a/x)^(3/2),x, algorithm="giac")

[Out]

integrate(((a*x + 1)/(a*x - 1))^(1/2*n)/(c - c/(a*x))^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.04, size = 0, normalized size = 0.00 \[ \int \frac {{\mathrm e}^{n \arctanh \left (a x \right )}}{\left (c -\frac {c}{a x}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arctanh(a*x))/(c-c/a/x)^(3/2),x)

[Out]

int(exp(n*arctanh(a*x))/(c-c/a/x)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{{\left (c - \frac {c}{a x}\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arctanh(a*x))/(c-c/a/x)^(3/2),x, algorithm="maxima")

[Out]

integrate(((a*x + 1)/(a*x - 1))^(1/2*n)/(c - c/(a*x))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\mathrm {e}}^{n\,\mathrm {atanh}\left (a\,x\right )}}{{\left (c-\frac {c}{a\,x}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*atanh(a*x))/(c - c/(a*x))^(3/2),x)

[Out]

int(exp(n*atanh(a*x))/(c - c/(a*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e^{n \operatorname {atanh}{\left (a x \right )}}}{\left (- c \left (-1 + \frac {1}{a x}\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*atanh(a*x))/(c-c/a/x)**(3/2),x)

[Out]

Integral(exp(n*atanh(a*x))/(-c*(-1 + 1/(a*x)))**(3/2), x)

________________________________________________________________________________________