3.612 \(\int \frac {e^{-3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx\)

Optimal. Leaf size=124 \[ -\frac {10 a x \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {a x+1}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {a x+1}}+\frac {2 \sqrt {a} \sqrt {x} \sqrt {c-\frac {c}{a x}} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {1-a x}} \]

[Out]

2*arcsinh(a^(1/2)*x^(1/2))*a^(1/2)*(c-c/a/x)^(1/2)*x^(1/2)/(-a*x+1)^(1/2)-2*(c-c/a/x)^(1/2)/(-a*x+1)^(1/2)/(a*
x+1)^(1/2)-10*a*x*(c-c/a/x)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6134, 6129, 89, 78, 54, 215} \[ -\frac {10 a x \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {a x+1}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {a x+1}}+\frac {2 \sqrt {a} \sqrt {x} \sqrt {c-\frac {c}{a x}} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {1-a x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a*x)]/(E^(3*ArcTanh[a*x])*x),x]

[Out]

(-2*Sqrt[c - c/(a*x)])/(Sqrt[1 - a*x]*Sqrt[1 + a*x]) - (10*a*Sqrt[c - c/(a*x)]*x)/(Sqrt[1 - a*x]*Sqrt[1 + a*x]
) + (2*Sqrt[a]*Sqrt[c - c/(a*x)]*Sqrt[x]*ArcSinh[Sqrt[a]*Sqrt[x]])/Sqrt[1 - a*x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6134

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(x^p*(c + d/x)^p)/(1 + (c*
x)/d)^p, Int[(u*(1 + (c*x)/d)^p*E^(n*ArcTanh[a*x]))/x^p, x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {e^{-3 \tanh ^{-1}(a x)} \sqrt {1-a x}}{x^{3/2}} \, dx}{\sqrt {1-a x}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {(1-a x)^2}{x^{3/2} (1+a x)^{3/2}} \, dx}{\sqrt {1-a x}}\\ &=-\frac {2 \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {1+a x}}+\frac {\left (2 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {-2 a+\frac {a^2 x}{2}}{\sqrt {x} (1+a x)^{3/2}} \, dx}{\sqrt {1-a x}}\\ &=-\frac {2 \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {1+a x}}-\frac {10 a \sqrt {c-\frac {c}{a x}} x}{\sqrt {1-a x} \sqrt {1+a x}}+\frac {\left (a \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+a x}} \, dx}{\sqrt {1-a x}}\\ &=-\frac {2 \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {1+a x}}-\frac {10 a \sqrt {c-\frac {c}{a x}} x}{\sqrt {1-a x} \sqrt {1+a x}}+\frac {\left (2 a \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+a x^2}} \, dx,x,\sqrt {x}\right )}{\sqrt {1-a x}}\\ &=-\frac {2 \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x} \sqrt {1+a x}}-\frac {10 a \sqrt {c-\frac {c}{a x}} x}{\sqrt {1-a x} \sqrt {1+a x}}+\frac {2 \sqrt {a} \sqrt {c-\frac {c}{a x}} \sqrt {x} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {1-a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 70, normalized size = 0.56 \[ -\frac {2 \sqrt {c-\frac {c}{a x}} \left (5 a x-\sqrt {a} \sqrt {x} \sqrt {a x+1} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )+1\right )}{\sqrt {1-a^2 x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - c/(a*x)]/(E^(3*ArcTanh[a*x])*x),x]

[Out]

(-2*Sqrt[c - c/(a*x)]*(1 + 5*a*x - Sqrt[a]*Sqrt[x]*Sqrt[1 + a*x]*ArcSinh[Sqrt[a]*Sqrt[x]]))/Sqrt[1 - a^2*x^2]

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 264, normalized size = 2.13 \[ \left [\frac {{\left (a^{2} x^{2} - 1\right )} \sqrt {-c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x + 4 \, {\left (2 \, a^{2} x^{2} + a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \, \sqrt {-a^{2} x^{2} + 1} {\left (5 \, a x + 1\right )} \sqrt {\frac {a c x - c}{a x}}}{2 \, {\left (a^{2} x^{2} - 1\right )}}, -\frac {{\left (a^{2} x^{2} - 1\right )} \sqrt {c} \arctan \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) - 2 \, \sqrt {-a^{2} x^{2} + 1} {\left (5 \, a x + 1\right )} \sqrt {\frac {a c x - c}{a x}}}{a^{2} x^{2} - 1}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x,x, algorithm="fricas")

[Out]

[1/2*((a^2*x^2 - 1)*sqrt(-c)*log(-(8*a^3*c*x^3 - 7*a*c*x + 4*(2*a^2*x^2 + a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sqr
t((a*c*x - c)/(a*x)) - c)/(a*x - 1)) + 4*sqrt(-a^2*x^2 + 1)*(5*a*x + 1)*sqrt((a*c*x - c)/(a*x)))/(a^2*x^2 - 1)
, -((a^2*x^2 - 1)*sqrt(c)*arctan(2*sqrt(-a^2*x^2 + 1)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x
 - c)) - 2*sqrt(-a^2*x^2 + 1)*(5*a*x + 1)*sqrt((a*c*x - c)/(a*x)))/(a^2*x^2 - 1)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.06, size = 142, normalized size = 1.15 \[ \frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (\arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-\left (a x +1\right ) x}}\right ) x^{2} a^{2}+10 a^{\frac {3}{2}} x \sqrt {-\left (a x +1\right ) x}+\arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-\left (a x +1\right ) x}}\right ) x a +2 \sqrt {a}\, \sqrt {-\left (a x +1\right ) x}\right ) \sqrt {-a^{2} x^{2}+1}}{\left (a x +1\right ) \sqrt {a}\, \sqrt {-\left (a x +1\right ) x}\, \left (a x -1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x,x)

[Out]

(c*(a*x-1)/a/x)^(1/2)*(arctan(1/2/a^(1/2)*(2*a*x+1)/(-(a*x+1)*x)^(1/2))*x^2*a^2+10*a^(3/2)*x*(-(a*x+1)*x)^(1/2
)+arctan(1/2/a^(1/2)*(2*a*x+1)/(-(a*x+1)*x)^(1/2))*x*a+2*a^(1/2)*(-(a*x+1)*x)^(1/2))*(-a^2*x^2+1)^(1/2)/(a*x+1
)/a^(1/2)/(-(a*x+1)*x)^(1/2)/(a*x-1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} \sqrt {c - \frac {c}{a x}}}{{\left (a x + 1\right )}^{3} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x,x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))/((a*x + 1)^3*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-\frac {c}{a\,x}}\,{\left (1-a^2\,x^2\right )}^{3/2}}{x\,{\left (a\,x+1\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(x*(a*x + 1)^3),x)

[Out]

int(((c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(x*(a*x + 1)^3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}{x \left (a x + 1\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/x,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))*(-(a*x - 1)*(a*x + 1))**(3/2)/(x*(a*x + 1)**3), x)

________________________________________________________________________________________