3.604 \(\int \frac {e^{-2 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx\)

Optimal. Leaf size=82 \[ \frac {2 a \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}+4 a \sqrt {c-\frac {c}{a x}}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

[Out]

2/3*a*(c-c/a/x)^(3/2)/c-4*a*arctanh(1/2*(c-c/a/x)^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^(1/2)+4*a*(c-c/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {6133, 25, 514, 444, 50, 63, 208} \[ \frac {2 a \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}+4 a \sqrt {c-\frac {c}{a x}}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a*x)]/(E^(2*ArcTanh[a*x])*x^2),x]

[Out]

4*a*Sqrt[c - c/(a*x)] + (2*a*(c - c/(a*x))^(3/2))/(3*c) - 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[
2]*Sqrt[c])]

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[(u*(
a + b*x^n)^(m + p))/x^(n*p), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 514

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 6133

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[(u*(c + d/x)^p*(1 + a*x)^(n/
2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &
&  !GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {e^{-2 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx &=\int \frac {\sqrt {c-\frac {c}{a x}} (1-a x)}{x^2 (1+a x)} \, dx\\ &=-\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{x (1+a x)} \, dx}{c}\\ &=-\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{\left (a+\frac {1}{x}\right ) x^2} \, dx}{c}\\ &=\frac {a \operatorname {Subst}\left (\int \frac {\left (c-\frac {c x}{a}\right )^{3/2}}{a+x} \, dx,x,\frac {1}{x}\right )}{c}\\ &=\frac {2 a \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}+(2 a) \operatorname {Subst}\left (\int \frac {\sqrt {c-\frac {c x}{a}}}{a+x} \, dx,x,\frac {1}{x}\right )\\ &=4 a \sqrt {c-\frac {c}{a x}}+\frac {2 a \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}+(4 a c) \operatorname {Subst}\left (\int \frac {1}{(a+x) \sqrt {c-\frac {c x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=4 a \sqrt {c-\frac {c}{a x}}+\frac {2 a \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}-\left (8 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{2 a-\frac {a x^2}{c}} \, dx,x,\sqrt {c-\frac {c}{a x}}\right )\\ &=4 a \sqrt {c-\frac {c}{a x}}+\frac {2 a \left (c-\frac {c}{a x}\right )^{3/2}}{3 c}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 69, normalized size = 0.84 \[ \frac {2 (7 a x-1) \sqrt {c-\frac {c}{a x}}}{3 x}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - c/(a*x)]/(E^(2*ArcTanh[a*x])*x^2),x]

[Out]

(2*Sqrt[c - c/(a*x)]*(-1 + 7*a*x))/(3*x) - 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])]

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 157, normalized size = 1.91 \[ \left [\frac {2 \, {\left (3 \, \sqrt {2} a \sqrt {c} x \log \left (\frac {2 \, \sqrt {2} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} - 3 \, a c x + c}{a x + 1}\right ) + {\left (7 \, a x - 1\right )} \sqrt {\frac {a c x - c}{a x}}\right )}}{3 \, x}, \frac {2 \, {\left (6 \, \sqrt {2} a \sqrt {-c} x \arctan \left (\frac {\sqrt {2} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{2 \, c}\right ) + {\left (7 \, a x - 1\right )} \sqrt {\frac {a c x - c}{a x}}\right )}}{3 \, x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^2,x, algorithm="fricas")

[Out]

[2/3*(3*sqrt(2)*a*sqrt(c)*x*log((2*sqrt(2)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) - 3*a*c*x + c)/(a*x + 1)) + (7*
a*x - 1)*sqrt((a*c*x - c)/(a*x)))/x, 2/3*(6*sqrt(2)*a*sqrt(-c)*x*arctan(1/2*sqrt(2)*sqrt(-c)*sqrt((a*c*x - c)/
(a*x))/c) + (7*a*x - 1)*sqrt((a*c*x - c)/(a*x)))/x]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]index.cc index_m operator + Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.04, size = 254, normalized size = 3.10 \[ -\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (-18 \sqrt {a \,x^{2}-x}\, a^{\frac {5}{2}} \sqrt {\frac {1}{a}}\, x^{3}+6 a^{\frac {5}{2}} \sqrt {\frac {1}{a}}\, \sqrt {\left (a x -1\right ) x}\, x^{3}+12 a^{\frac {3}{2}} \left (a \,x^{2}-x \right )^{\frac {3}{2}} x \sqrt {\frac {1}{a}}+9 \ln \left (\frac {2 \sqrt {a \,x^{2}-x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) \sqrt {\frac {1}{a}}\, x^{3} a^{2}-6 a^{\frac {3}{2}} \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {\left (a x -1\right ) x}\, a -3 a x +1}{a x +1}\right ) x^{3}-9 \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) \sqrt {\frac {1}{a}}\, x^{3} a^{2}-2 \left (a \,x^{2}-x \right )^{\frac {3}{2}} \sqrt {a}\, \sqrt {\frac {1}{a}}\right )}{3 x^{2} \sqrt {\left (a x -1\right ) x}\, \sqrt {a}\, \sqrt {\frac {1}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^2,x)

[Out]

-1/3*(c*(a*x-1)/a/x)^(1/2)/x^2*(-18*(a*x^2-x)^(1/2)*a^(5/2)*(1/a)^(1/2)*x^3+6*a^(5/2)*(1/a)^(1/2)*((a*x-1)*x)^
(1/2)*x^3+12*a^(3/2)*(a*x^2-x)^(3/2)*x*(1/a)^(1/2)+9*ln(1/2*(2*(a*x^2-x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*(1/a)
^(1/2)*x^3*a^2-6*a^(3/2)*2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((a*x-1)*x)^(1/2)*a-3*a*x+1)/(a*x+1))*x^3-9*ln(1/2*
(2*((a*x-1)*x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*(1/a)^(1/2)*x^3*a^2-2*(a*x^2-x)^(3/2)*a^(1/2)*(1/a)^(1/2))/((a*
x-1)*x)^(1/2)/a^(1/2)/(1/a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {{\left (a^{2} x^{2} - 1\right )} \sqrt {c - \frac {c}{a x}}}{{\left (a x + 1\right )}^{2} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^2,x, algorithm="maxima")

[Out]

-integrate((a^2*x^2 - 1)*sqrt(c - c/(a*x))/((a*x + 1)^2*x^2), x)

________________________________________________________________________________________

mupad [B]  time = 1.42, size = 67, normalized size = 0.82 \[ 4\,a\,\sqrt {c-\frac {c}{a\,x}}+\frac {2\,a\,{\left (c-\frac {c}{a\,x}\right )}^{3/2}}{3\,c}-4\,\sqrt {2}\,a\,\sqrt {c}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {c-\frac {c}{a\,x}}}{2\,\sqrt {c}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((c - c/(a*x))^(1/2)*(a^2*x^2 - 1))/(x^2*(a*x + 1)^2),x)

[Out]

4*a*(c - c/(a*x))^(1/2) + (2*a*(c - c/(a*x))^(3/2))/(3*c) - 4*2^(1/2)*a*c^(1/2)*atanh((2^(1/2)*(c - c/(a*x))^(
1/2))/(2*c^(1/2)))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \left (- \frac {\sqrt {c - \frac {c}{a x}}}{a x^{3} + x^{2}}\right )\, dx - \int \frac {a x \sqrt {c - \frac {c}{a x}}}{a x^{3} + x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)/(a*x+1)**2*(-a**2*x**2+1)/x**2,x)

[Out]

-Integral(-sqrt(c - c/(a*x))/(a*x**3 + x**2), x) - Integral(a*x*sqrt(c - c/(a*x))/(a*x**3 + x**2), x)

________________________________________________________________________________________