3.587 \(\int \frac {e^{3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx\)

Optimal. Leaf size=147 \[ \frac {4 \sqrt {2} a^{3/2} \sqrt {x} \sqrt {c-\frac {c}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}-\frac {4 a \sqrt {a x+1} \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x}}-\frac {2 (a x+1)^{3/2} \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x}} \]

[Out]

-2/3*(a*x+1)^(3/2)*(c-c/a/x)^(1/2)/x/(-a*x+1)^(1/2)+4*a^(3/2)*arctanh(2^(1/2)*a^(1/2)*x^(1/2)/(a*x+1)^(1/2))*2
^(1/2)*(c-c/a/x)^(1/2)*x^(1/2)/(-a*x+1)^(1/2)-4*a*(c-c/a/x)^(1/2)*(a*x+1)^(1/2)/(-a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {6134, 6129, 94, 93, 206} \[ \frac {4 \sqrt {2} a^{3/2} \sqrt {x} \sqrt {c-\frac {c}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}-\frac {4 a \sqrt {a x+1} \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x}}-\frac {2 (a x+1)^{3/2} \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(3*ArcTanh[a*x])*Sqrt[c - c/(a*x)])/x^2,x]

[Out]

(-4*a*Sqrt[c - c/(a*x)]*Sqrt[1 + a*x])/Sqrt[1 - a*x] - (2*Sqrt[c - c/(a*x)]*(1 + a*x)^(3/2))/(3*x*Sqrt[1 - a*x
]) + (4*Sqrt[2]*a^(3/2)*Sqrt[c - c/(a*x)]*Sqrt[x]*ArcTanh[(Sqrt[2]*Sqrt[a]*Sqrt[x])/Sqrt[1 + a*x]])/Sqrt[1 - a
*x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6134

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(x^p*(c + d/x)^p)/(1 + (c*
x)/d)^p, Int[(u*(1 + (c*x)/d)^p*E^(n*ArcTanh[a*x]))/x^p, x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {e^{3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {e^{3 \tanh ^{-1}(a x)} \sqrt {1-a x}}{x^{5/2}} \, dx}{\sqrt {1-a x}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {(1+a x)^{3/2}}{x^{5/2} (1-a x)} \, dx}{\sqrt {1-a x}}\\ &=-\frac {2 \sqrt {c-\frac {c}{a x}} (1+a x)^{3/2}}{3 x \sqrt {1-a x}}+\frac {\left (2 a \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {\sqrt {1+a x}}{x^{3/2} (1-a x)} \, dx}{\sqrt {1-a x}}\\ &=-\frac {4 a \sqrt {c-\frac {c}{a x}} \sqrt {1+a x}}{\sqrt {1-a x}}-\frac {2 \sqrt {c-\frac {c}{a x}} (1+a x)^{3/2}}{3 x \sqrt {1-a x}}+\frac {\left (4 a^2 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {1}{\sqrt {x} (1-a x) \sqrt {1+a x}} \, dx}{\sqrt {1-a x}}\\ &=-\frac {4 a \sqrt {c-\frac {c}{a x}} \sqrt {1+a x}}{\sqrt {1-a x}}-\frac {2 \sqrt {c-\frac {c}{a x}} (1+a x)^{3/2}}{3 x \sqrt {1-a x}}+\frac {\left (8 a^2 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{1-2 a x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {1+a x}}\right )}{\sqrt {1-a x}}\\ &=-\frac {4 a \sqrt {c-\frac {c}{a x}} \sqrt {1+a x}}{\sqrt {1-a x}}-\frac {2 \sqrt {c-\frac {c}{a x}} (1+a x)^{3/2}}{3 x \sqrt {1-a x}}+\frac {4 \sqrt {2} a^{3/2} \sqrt {c-\frac {c}{a x}} \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {1+a x}}\right )}{\sqrt {1-a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 93, normalized size = 0.63 \[ \frac {2 \sqrt {c-\frac {c}{a x}} \left (6 \sqrt {2} a^{3/2} x^{3/2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {a x+1}}\right )-\sqrt {a x+1} (7 a x+1)\right )}{3 x \sqrt {1-a x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(3*ArcTanh[a*x])*Sqrt[c - c/(a*x)])/x^2,x]

[Out]

(2*Sqrt[c - c/(a*x)]*(-(Sqrt[1 + a*x]*(1 + 7*a*x)) + 6*Sqrt[2]*a^(3/2)*x^(3/2)*ArcTanh[(Sqrt[2]*Sqrt[a]*Sqrt[x
])/Sqrt[1 + a*x]]))/(3*x*Sqrt[1 - a*x])

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 309, normalized size = 2.10 \[ \left [\frac {3 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \log \left (-\frac {17 \, a^{3} c x^{3} - 3 \, a^{2} c x^{2} - 13 \, a c x + 4 \, \sqrt {2} {\left (3 \, a^{2} x^{2} + a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}} - c}{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}\right ) + 2 \, \sqrt {-a^{2} x^{2} + 1} {\left (7 \, a x + 1\right )} \sqrt {\frac {a c x - c}{a x}}}{3 \, {\left (a x^{2} - x\right )}}, -\frac {2 \, {\left (3 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \arctan \left (\frac {2 \, \sqrt {2} \sqrt {-a^{2} x^{2} + 1} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}}}{3 \, a^{2} c x^{2} - 2 \, a c x - c}\right ) - \sqrt {-a^{2} x^{2} + 1} {\left (7 \, a x + 1\right )} \sqrt {\frac {a c x - c}{a x}}\right )}}{3 \, {\left (a x^{2} - x\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/3*(3*sqrt(2)*(a^2*x^2 - a*x)*sqrt(-c)*log(-(17*a^3*c*x^3 - 3*a^2*c*x^2 - 13*a*c*x + 4*sqrt(2)*(3*a^2*x^2 +
a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sqrt((a*c*x - c)/(a*x)) - c)/(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)) + 2*sqrt(-a^2
*x^2 + 1)*(7*a*x + 1)*sqrt((a*c*x - c)/(a*x)))/(a*x^2 - x), -2/3*(3*sqrt(2)*(a^2*x^2 - a*x)*sqrt(c)*arctan(2*s
qrt(2)*sqrt(-a^2*x^2 + 1)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x))/(3*a^2*c*x^2 - 2*a*c*x - c)) - sqrt(-a^2*x^2 + 1
)*(7*a*x + 1)*sqrt((a*c*x - c)/(a*x)))/(a*x^2 - x)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.06, size = 150, normalized size = 1.02 \[ \frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {-a^{2} x^{2}+1}\, \left (7 a \sqrt {2}\, \sqrt {-\frac {1}{a}}\, x \sqrt {-\left (a x +1\right ) x}+6 a \ln \left (\frac {2 \sqrt {2}\, \sqrt {-\frac {1}{a}}\, \sqrt {-\left (a x +1\right ) x}\, a -3 a x -1}{a x -1}\right ) x^{2}+\sqrt {2}\, \sqrt {-\frac {1}{a}}\, \sqrt {-\left (a x +1\right ) x}\right ) \sqrt {2}}{3 x \left (a x -1\right ) \sqrt {-\left (a x +1\right ) x}\, \sqrt {-\frac {1}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a/x)^(1/2)/x^2,x)

[Out]

1/3*(c*(a*x-1)/a/x)^(1/2)/x*(-a^2*x^2+1)^(1/2)*(7*a*2^(1/2)*(-1/a)^(1/2)*x*(-(a*x+1)*x)^(1/2)+6*a*ln((2*2^(1/2
)*(-1/a)^(1/2)*(-(a*x+1)*x)^(1/2)*a-3*a*x-1)/(a*x-1))*x^2+2^(1/2)*(-1/a)^(1/2)*(-(a*x+1)*x)^(1/2))*2^(1/2)/(a*
x-1)/(-(a*x+1)*x)^(1/2)/(-1/a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )}^{3} \sqrt {c - \frac {c}{a x}}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate((a*x + 1)^3*sqrt(c - c/(a*x))/((-a^2*x^2 + 1)^(3/2)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-\frac {c}{a\,x}}\,{\left (a\,x+1\right )}^3}{x^2\,{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a*x))^(1/2)*(a*x + 1)^3)/(x^2*(1 - a^2*x^2)^(3/2)),x)

[Out]

int(((c - c/(a*x))^(1/2)*(a*x + 1)^3)/(x^2*(1 - a^2*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (a x + 1\right )^{3}}{x^{2} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(c-c/a/x)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))*(a*x + 1)**3/(x**2*(-(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________