3.584 \(\int e^{3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x \, dx\)

Optimal. Leaf size=204 \[ -\frac {23 \sqrt {x} \sqrt {c-\frac {c}{a x}} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{4 a^{3/2} \sqrt {1-a x}}+\frac {4 \sqrt {2} \sqrt {x} \sqrt {c-\frac {c}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {a x+1}}\right )}{a^{3/2} \sqrt {1-a x}}-\frac {x (a x+1)^{3/2} \sqrt {c-\frac {c}{a x}}}{2 a \sqrt {1-a x}}-\frac {7 x \sqrt {a x+1} \sqrt {c-\frac {c}{a x}}}{4 a \sqrt {1-a x}} \]

[Out]

-1/2*x*(a*x+1)^(3/2)*(c-c/a/x)^(1/2)/a/(-a*x+1)^(1/2)-23/4*arcsinh(a^(1/2)*x^(1/2))*(c-c/a/x)^(1/2)*x^(1/2)/a^
(3/2)/(-a*x+1)^(1/2)+4*arctanh(2^(1/2)*a^(1/2)*x^(1/2)/(a*x+1)^(1/2))*2^(1/2)*(c-c/a/x)^(1/2)*x^(1/2)/a^(3/2)/
(-a*x+1)^(1/2)-7/4*x*(c-c/a/x)^(1/2)*(a*x+1)^(1/2)/a/(-a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {6134, 6129, 101, 154, 157, 54, 215, 93, 206} \[ -\frac {23 \sqrt {x} \sqrt {c-\frac {c}{a x}} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{4 a^{3/2} \sqrt {1-a x}}+\frac {4 \sqrt {2} \sqrt {x} \sqrt {c-\frac {c}{a x}} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {a x+1}}\right )}{a^{3/2} \sqrt {1-a x}}-\frac {x (a x+1)^{3/2} \sqrt {c-\frac {c}{a x}}}{2 a \sqrt {1-a x}}-\frac {7 x \sqrt {a x+1} \sqrt {c-\frac {c}{a x}}}{4 a \sqrt {1-a x}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a*x])*Sqrt[c - c/(a*x)]*x,x]

[Out]

(-7*Sqrt[c - c/(a*x)]*x*Sqrt[1 + a*x])/(4*a*Sqrt[1 - a*x]) - (Sqrt[c - c/(a*x)]*x*(1 + a*x)^(3/2))/(2*a*Sqrt[1
 - a*x]) - (23*Sqrt[c - c/(a*x)]*Sqrt[x]*ArcSinh[Sqrt[a]*Sqrt[x]])/(4*a^(3/2)*Sqrt[1 - a*x]) + (4*Sqrt[2]*Sqrt
[c - c/(a*x)]*Sqrt[x]*ArcTanh[(Sqrt[2]*Sqrt[a]*Sqrt[x])/Sqrt[1 + a*x]])/(a^(3/2)*Sqrt[1 - a*x])

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6134

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(x^p*(c + d/x)^p)/(1 + (c*
x)/d)^p, Int[(u*(1 + (c*x)/d)^p*E^(n*ArcTanh[a*x]))/x^p, x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int e^{3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} x \, dx &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int e^{3 \tanh ^{-1}(a x)} \sqrt {x} \sqrt {1-a x} \, dx}{\sqrt {1-a x}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {\sqrt {x} (1+a x)^{3/2}}{1-a x} \, dx}{\sqrt {1-a x}}\\ &=-\frac {\sqrt {c-\frac {c}{a x}} x (1+a x)^{3/2}}{2 a \sqrt {1-a x}}+\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {\sqrt {1+a x} \left (\frac {1}{2}+\frac {7 a x}{2}\right )}{\sqrt {x} (1-a x)} \, dx}{2 a \sqrt {1-a x}}\\ &=-\frac {7 \sqrt {c-\frac {c}{a x}} x \sqrt {1+a x}}{4 a \sqrt {1-a x}}-\frac {\sqrt {c-\frac {c}{a x}} x (1+a x)^{3/2}}{2 a \sqrt {1-a x}}-\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {-\frac {9 a}{4}-\frac {23 a^2 x}{4}}{\sqrt {x} (1-a x) \sqrt {1+a x}} \, dx}{2 a^2 \sqrt {1-a x}}\\ &=-\frac {7 \sqrt {c-\frac {c}{a x}} x \sqrt {1+a x}}{4 a \sqrt {1-a x}}-\frac {\sqrt {c-\frac {c}{a x}} x (1+a x)^{3/2}}{2 a \sqrt {1-a x}}-\frac {\left (23 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+a x}} \, dx}{8 a \sqrt {1-a x}}+\frac {\left (4 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {1}{\sqrt {x} (1-a x) \sqrt {1+a x}} \, dx}{a \sqrt {1-a x}}\\ &=-\frac {7 \sqrt {c-\frac {c}{a x}} x \sqrt {1+a x}}{4 a \sqrt {1-a x}}-\frac {\sqrt {c-\frac {c}{a x}} x (1+a x)^{3/2}}{2 a \sqrt {1-a x}}-\frac {\left (23 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+a x^2}} \, dx,x,\sqrt {x}\right )}{4 a \sqrt {1-a x}}+\frac {\left (8 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \operatorname {Subst}\left (\int \frac {1}{1-2 a x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {1+a x}}\right )}{a \sqrt {1-a x}}\\ &=-\frac {7 \sqrt {c-\frac {c}{a x}} x \sqrt {1+a x}}{4 a \sqrt {1-a x}}-\frac {\sqrt {c-\frac {c}{a x}} x (1+a x)^{3/2}}{2 a \sqrt {1-a x}}-\frac {23 \sqrt {c-\frac {c}{a x}} \sqrt {x} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )}{4 a^{3/2} \sqrt {1-a x}}+\frac {4 \sqrt {2} \sqrt {c-\frac {c}{a x}} \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {1+a x}}\right )}{a^{3/2} \sqrt {1-a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 114, normalized size = 0.56 \[ -\frac {\sqrt {c-\frac {c}{a x}} \left (\sqrt {a} x \sqrt {a x+1} (2 a x+9)+23 \sqrt {x} \sinh ^{-1}\left (\sqrt {a} \sqrt {x}\right )-16 \sqrt {2} \sqrt {x} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {x}}{\sqrt {a x+1}}\right )\right )}{4 a^{3/2} \sqrt {1-a x}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a*x])*Sqrt[c - c/(a*x)]*x,x]

[Out]

-1/4*(Sqrt[c - c/(a*x)]*(Sqrt[a]*x*Sqrt[1 + a*x]*(9 + 2*a*x) + 23*Sqrt[x]*ArcSinh[Sqrt[a]*Sqrt[x]] - 16*Sqrt[2
]*Sqrt[x]*ArcTanh[(Sqrt[2]*Sqrt[a]*Sqrt[x])/Sqrt[1 + a*x]]))/(a^(3/2)*Sqrt[1 - a*x])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 468, normalized size = 2.29 \[ \left [\frac {16 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {17 \, a^{3} c x^{3} - 3 \, a^{2} c x^{2} - 13 \, a c x + 4 \, \sqrt {2} {\left (3 \, a^{2} x^{2} + a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}} - c}{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}\right ) + 23 \, {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x - 4 \, {\left (2 \, a^{2} x^{2} + a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \, {\left (2 \, a^{2} x^{2} + 9 \, a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{16 \, {\left (a^{3} x - a^{2}\right )}}, -\frac {16 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {2 \, \sqrt {2} \sqrt {-a^{2} x^{2} + 1} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}}}{3 \, a^{2} c x^{2} - 2 \, a c x - c}\right ) - 23 \, {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) - 2 \, {\left (2 \, a^{2} x^{2} + 9 \, a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{8 \, {\left (a^{3} x - a^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(c-c/a/x)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(16*sqrt(2)*(a*x - 1)*sqrt(-c)*log(-(17*a^3*c*x^3 - 3*a^2*c*x^2 - 13*a*c*x + 4*sqrt(2)*(3*a^2*x^2 + a*x)
*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sqrt((a*c*x - c)/(a*x)) - c)/(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)) + 23*(a*x - 1)*sq
rt(-c)*log(-(8*a^3*c*x^3 - 7*a*c*x - 4*(2*a^2*x^2 + a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sqrt((a*c*x - c)/(a*x)) -
 c)/(a*x - 1)) + 4*(2*a^2*x^2 + 9*a*x)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^3*x - a^2), -1/8*(16*sqr
t(2)*(a*x - 1)*sqrt(c)*arctan(2*sqrt(2)*sqrt(-a^2*x^2 + 1)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x))/(3*a^2*c*x^2 -
2*a*c*x - c)) - 23*(a*x - 1)*sqrt(c)*arctan(2*sqrt(-a^2*x^2 + 1)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*
x^2 - a*c*x - c)) - 2*(2*a^2*x^2 + 9*a*x)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^3*x - a^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(c-c/a/x)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.05, size = 191, normalized size = 0.94 \[ \frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \sqrt {-a^{2} x^{2}+1}\, \left (4 a^{\frac {5}{2}} \sqrt {2}\, \sqrt {-\frac {1}{a}}\, \sqrt {-\left (a x +1\right ) x}\, x +18 \sqrt {-\left (a x +1\right ) x}\, a^{\frac {3}{2}} \sqrt {2}\, \sqrt {-\frac {1}{a}}-23 \arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-\left (a x +1\right ) x}}\right ) a \sqrt {2}\, \sqrt {-\frac {1}{a}}+32 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-\frac {1}{a}}\, \sqrt {-\left (a x +1\right ) x}\, a -3 a x -1}{a x -1}\right ) \sqrt {a}\right ) \sqrt {2}}{16 a^{\frac {5}{2}} \left (a x -1\right ) \sqrt {-\left (a x +1\right ) x}\, \sqrt {-\frac {1}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(c-c/a/x)^(1/2),x)

[Out]

1/16*(c*(a*x-1)/a/x)^(1/2)*x*(-a^2*x^2+1)^(1/2)*(4*a^(5/2)*2^(1/2)*(-1/a)^(1/2)*(-(a*x+1)*x)^(1/2)*x+18*(-(a*x
+1)*x)^(1/2)*a^(3/2)*2^(1/2)*(-1/a)^(1/2)-23*arctan(1/2/a^(1/2)*(2*a*x+1)/(-(a*x+1)*x)^(1/2))*a*2^(1/2)*(-1/a)
^(1/2)+32*ln((2*2^(1/2)*(-1/a)^(1/2)*(-(a*x+1)*x)^(1/2)*a-3*a*x-1)/(a*x-1))*a^(1/2))*2^(1/2)/a^(5/2)/(a*x-1)/(
-(a*x+1)*x)^(1/2)/(-1/a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a x + 1\right )}^{3} \sqrt {c - \frac {c}{a x}} x}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*x*(c-c/a/x)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)^3*sqrt(c - c/(a*x))*x/(-a^2*x^2 + 1)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,\sqrt {c-\frac {c}{a\,x}}\,{\left (a\,x+1\right )}^3}{{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(c - c/(a*x))^(1/2)*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2),x)

[Out]

int((x*(c - c/(a*x))^(1/2)*(a*x + 1)^3)/(1 - a^2*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (a x + 1\right )^{3}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*x*(c-c/a/x)**(1/2),x)

[Out]

Integral(x*sqrt(-c*(-1 + 1/(a*x)))*(a*x + 1)**3/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________