3.425 \(\int \frac {e^{-2 \tanh ^{-1}(a x)} \sqrt {c-a c x}}{x^3} \, dx\)

Optimal. Leaf size=106 \[ -\frac {23}{4} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )-\frac {\sqrt {c-a c x}}{2 x^2}+\frac {9 a \sqrt {c-a c x}}{4 x} \]

[Out]

-23/4*a^2*arctanh((-a*c*x+c)^(1/2)/c^(1/2))*c^(1/2)+4*a^2*arctanh(1/2*(-a*c*x+c)^(1/2)*2^(1/2)/c^(1/2))*2^(1/2
)*c^(1/2)-1/2*(-a*c*x+c)^(1/2)/x^2+9/4*a*(-a*c*x+c)^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {6130, 21, 98, 151, 156, 63, 208, 206} \[ -\frac {23}{4} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )-\frac {\sqrt {c-a c x}}{2 x^2}+\frac {9 a \sqrt {c-a c x}}{4 x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a*c*x]/(E^(2*ArcTanh[a*x])*x^3),x]

[Out]

-Sqrt[c - a*c*x]/(2*x^2) + (9*a*Sqrt[c - a*c*x])/(4*x) - (23*a^2*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]])/4 +
 4*Sqrt[2]*a^2*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqrt[c])]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 6130

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[(u*(c + d*x)^p*(1 + a*x)^(
n/2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rubi steps

\begin {align*} \int \frac {e^{-2 \tanh ^{-1}(a x)} \sqrt {c-a c x}}{x^3} \, dx &=\int \frac {(1-a x) \sqrt {c-a c x}}{x^3 (1+a x)} \, dx\\ &=\frac {\int \frac {(c-a c x)^{3/2}}{x^3 (1+a x)} \, dx}{c}\\ &=-\frac {\sqrt {c-a c x}}{2 x^2}-\frac {\int \frac {\frac {9 a c^2}{2}-\frac {7}{2} a^2 c^2 x}{x^2 (1+a x) \sqrt {c-a c x}} \, dx}{2 c}\\ &=-\frac {\sqrt {c-a c x}}{2 x^2}+\frac {9 a \sqrt {c-a c x}}{4 x}+\frac {\int \frac {\frac {23 a^2 c^3}{4}-\frac {9}{4} a^3 c^3 x}{x (1+a x) \sqrt {c-a c x}} \, dx}{2 c^2}\\ &=-\frac {\sqrt {c-a c x}}{2 x^2}+\frac {9 a \sqrt {c-a c x}}{4 x}+\frac {1}{8} \left (23 a^2 c\right ) \int \frac {1}{x \sqrt {c-a c x}} \, dx-\left (4 a^3 c\right ) \int \frac {1}{(1+a x) \sqrt {c-a c x}} \, dx\\ &=-\frac {\sqrt {c-a c x}}{2 x^2}+\frac {9 a \sqrt {c-a c x}}{4 x}-\frac {1}{4} (23 a) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a c}} \, dx,x,\sqrt {c-a c x}\right )+\left (8 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{2-\frac {x^2}{c}} \, dx,x,\sqrt {c-a c x}\right )\\ &=-\frac {\sqrt {c-a c x}}{2 x^2}+\frac {9 a \sqrt {c-a c x}}{4 x}-\frac {23}{4} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 93, normalized size = 0.88 \[ -\frac {23}{4} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a^2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )+\frac {(9 a x-2) \sqrt {c-a c x}}{4 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - a*c*x]/(E^(2*ArcTanh[a*x])*x^3),x]

[Out]

((-2 + 9*a*x)*Sqrt[c - a*c*x])/(4*x^2) - (23*a^2*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]])/4 + 4*Sqrt[2]*a^2*S
qrt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqrt[c])]

________________________________________________________________________________________

fricas [A]  time = 0.70, size = 204, normalized size = 1.92 \[ \left [\frac {16 \, \sqrt {2} a^{2} \sqrt {c} x^{2} \log \left (\frac {a c x - 2 \, \sqrt {2} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a x + 1}\right ) + 23 \, a^{2} \sqrt {c} x^{2} \log \left (\frac {a c x + 2 \, \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{x}\right ) + 2 \, \sqrt {-a c x + c} {\left (9 \, a x - 2\right )}}{8 \, x^{2}}, -\frac {16 \, \sqrt {2} a^{2} \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {-c}}{2 \, c}\right ) - 23 \, a^{2} \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {-c}}{c}\right ) - \sqrt {-a c x + c} {\left (9 \, a x - 2\right )}}{4 \, x^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x, algorithm="fricas")

[Out]

[1/8*(16*sqrt(2)*a^2*sqrt(c)*x^2*log((a*c*x - 2*sqrt(2)*sqrt(-a*c*x + c)*sqrt(c) - 3*c)/(a*x + 1)) + 23*a^2*sq
rt(c)*x^2*log((a*c*x + 2*sqrt(-a*c*x + c)*sqrt(c) - 2*c)/x) + 2*sqrt(-a*c*x + c)*(9*a*x - 2))/x^2, -1/4*(16*sq
rt(2)*a^2*sqrt(-c)*x^2*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)*sqrt(-c)/c) - 23*a^2*sqrt(-c)*x^2*arctan(sqrt(-a*c*
x + c)*sqrt(-c)/c) - sqrt(-a*c*x + c)*(9*a*x - 2))/x^2]

________________________________________________________________________________________

giac [A]  time = 0.20, size = 106, normalized size = 1.00 \[ -\frac {4 \, \sqrt {2} a^{2} c \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c}}{2 \, \sqrt {-c}}\right )}{\sqrt {-c}} + \frac {23 \, a^{2} c \arctan \left (\frac {\sqrt {-a c x + c}}{\sqrt {-c}}\right )}{4 \, \sqrt {-c}} - \frac {9 \, {\left (-a c x + c\right )}^{\frac {3}{2}} a^{2} c - 7 \, \sqrt {-a c x + c} a^{2} c^{2}}{4 \, a^{2} c^{2} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x, algorithm="giac")

[Out]

-4*sqrt(2)*a^2*c*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) + 23/4*a^2*c*arctan(sqrt(-a*c*x + c)/s
qrt(-c))/sqrt(-c) - 1/4*(9*(-a*c*x + c)^(3/2)*a^2*c - 7*sqrt(-a*c*x + c)*a^2*c^2)/(a^2*c^2*x^2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 95, normalized size = 0.90 \[ -2 a^{2} c^{2} \left (-\frac {2 \sqrt {2}\, \arctanh \left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{c^{\frac {3}{2}}}-\frac {\frac {-\frac {9 \left (-a c x +c \right )^{\frac {3}{2}}}{8}+\frac {7 c \sqrt {-a c x +c}}{8}}{x^{2} a^{2} c^{2}}-\frac {23 \arctanh \left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{8 \sqrt {c}}}{c}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x)

[Out]

-2*a^2*c^2*(-2/c^(3/2)*2^(1/2)*arctanh(1/2*(-a*c*x+c)^(1/2)*2^(1/2)/c^(1/2))-1/c*((-9/8*(-a*c*x+c)^(3/2)+7/8*c
*(-a*c*x+c)^(1/2))/x^2/a^2/c^2-23/8/c^(1/2)*arctanh((-a*c*x+c)^(1/2)/c^(1/2))))

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 152, normalized size = 1.43 \[ -\frac {1}{8} \, a^{2} c^{2} {\left (\frac {2 \, {\left (9 \, {\left (-a c x + c\right )}^{\frac {3}{2}} - 7 \, \sqrt {-a c x + c} c\right )}}{{\left (a c x - c\right )}^{2} c + 2 \, {\left (a c x - c\right )} c^{2} + c^{3}} + \frac {16 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-a c x + c}}{\sqrt {2} \sqrt {c} + \sqrt {-a c x + c}}\right )}{c^{\frac {3}{2}}} - \frac {23 \, \log \left (\frac {\sqrt {-a c x + c} - \sqrt {c}}{\sqrt {-a c x + c} + \sqrt {c}}\right )}{c^{\frac {3}{2}}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)^2*(-a^2*x^2+1)/x^3,x, algorithm="maxima")

[Out]

-1/8*a^2*c^2*(2*(9*(-a*c*x + c)^(3/2) - 7*sqrt(-a*c*x + c)*c)/((a*c*x - c)^2*c + 2*(a*c*x - c)*c^2 + c^3) + 16
*sqrt(2)*log(-(sqrt(2)*sqrt(c) - sqrt(-a*c*x + c))/(sqrt(2)*sqrt(c) + sqrt(-a*c*x + c)))/c^(3/2) - 23*log((sqr
t(-a*c*x + c) - sqrt(c))/(sqrt(-a*c*x + c) + sqrt(c)))/c^(3/2))

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 88, normalized size = 0.83 \[ \frac {7\,\sqrt {c-a\,c\,x}}{4\,x^2}+\frac {a^2\,\sqrt {c}\,\mathrm {atan}\left (\frac {\sqrt {c-a\,c\,x}\,1{}\mathrm {i}}{\sqrt {c}}\right )\,23{}\mathrm {i}}{4}-\frac {9\,{\left (c-a\,c\,x\right )}^{3/2}}{4\,c\,x^2}-\sqrt {2}\,a^2\,\sqrt {c}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-a\,c\,x}\,1{}\mathrm {i}}{2\,\sqrt {c}}\right )\,4{}\mathrm {i} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((a^2*x^2 - 1)*(c - a*c*x)^(1/2))/(x^3*(a*x + 1)^2),x)

[Out]

(7*(c - a*c*x)^(1/2))/(4*x^2) + (a^2*c^(1/2)*atan(((c - a*c*x)^(1/2)*1i)/c^(1/2))*23i)/4 - (9*(c - a*c*x)^(3/2
))/(4*c*x^2) - 2^(1/2)*a^2*c^(1/2)*atan((2^(1/2)*(c - a*c*x)^(1/2)*1i)/(2*c^(1/2)))*4i

________________________________________________________________________________________

sympy [B]  time = 25.66, size = 352, normalized size = 3.32 \[ - \frac {10 a^{2} c^{4} \sqrt {- a c x + c}}{16 a c^{4} x - 8 c^{4} + 8 c^{2} \left (- a c x + c\right )^{2}} + \frac {6 a^{2} c^{3} \left (- a c x + c\right )^{\frac {3}{2}}}{16 a c^{4} x - 8 c^{4} + 8 c^{2} \left (- a c x + c\right )^{2}} + \frac {3 a^{2} c^{3} \sqrt {\frac {1}{c^{5}}} \log {\left (- c^{3} \sqrt {\frac {1}{c^{5}}} + \sqrt {- a c x + c} \right )}}{8} - \frac {3 a^{2} c^{3} \sqrt {\frac {1}{c^{5}}} \log {\left (c^{3} \sqrt {\frac {1}{c^{5}}} + \sqrt {- a c x + c} \right )}}{8} - \frac {3 a^{2} c^{2} \sqrt {\frac {1}{c^{3}}} \log {\left (- c^{2} \sqrt {\frac {1}{c^{3}}} + \sqrt {- a c x + c} \right )}}{2} + \frac {3 a^{2} c^{2} \sqrt {\frac {1}{c^{3}}} \log {\left (c^{2} \sqrt {\frac {1}{c^{3}}} + \sqrt {- a c x + c} \right )}}{2} + \frac {8 a^{2} c \operatorname {atan}{\left (\frac {\sqrt {- a c x + c}}{\sqrt {- c}} \right )}}{\sqrt {- c}} - \frac {4 \sqrt {2} a^{2} c \operatorname {atan}{\left (\frac {\sqrt {2} \sqrt {- a c x + c}}{2 \sqrt {- c}} \right )}}{\sqrt {- c}} + \frac {3 a \sqrt {- a c x + c}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(1/2)/(a*x+1)**2*(-a**2*x**2+1)/x**3,x)

[Out]

-10*a**2*c**4*sqrt(-a*c*x + c)/(16*a*c**4*x - 8*c**4 + 8*c**2*(-a*c*x + c)**2) + 6*a**2*c**3*(-a*c*x + c)**(3/
2)/(16*a*c**4*x - 8*c**4 + 8*c**2*(-a*c*x + c)**2) + 3*a**2*c**3*sqrt(c**(-5))*log(-c**3*sqrt(c**(-5)) + sqrt(
-a*c*x + c))/8 - 3*a**2*c**3*sqrt(c**(-5))*log(c**3*sqrt(c**(-5)) + sqrt(-a*c*x + c))/8 - 3*a**2*c**2*sqrt(c**
(-3))*log(-c**2*sqrt(c**(-3)) + sqrt(-a*c*x + c))/2 + 3*a**2*c**2*sqrt(c**(-3))*log(c**2*sqrt(c**(-3)) + sqrt(
-a*c*x + c))/2 + 8*a**2*c*atan(sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) - 4*sqrt(2)*a**2*c*atan(sqrt(2)*sqrt(-a*c*x
 + c)/(2*sqrt(-c)))/sqrt(-c) + 3*a*sqrt(-a*c*x + c)/x

________________________________________________________________________________________