3.415 \(\int \frac {e^{-\tanh ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx\)

Optimal. Leaf size=68 \[ -\frac {2 c \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}-2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right ) \]

[Out]

-2*arctanh(c^(1/2)*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^(1/2))*c^(1/2)-2*c*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {6128, 881, 875, 208} \[ -\frac {2 c \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}-2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a*c*x]/(E^ArcTanh[a*x]*x),x]

[Out]

(-2*c*Sqrt[1 - a^2*x^2])/Sqrt[c - a*c*x] - 2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - a^2*x^2])/Sqrt[c - a*c*x]]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 875

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e^2, Subst[I
nt[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0]

Rule 881

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e^2*(d +
 e*x)^(m - 2)*(f + g*x)^(n + 1)*(a + c*x^2)^(p + 1))/(c*g*(n + p + 2)), x] - Dist[(e*f*(p + 1) - d*g*(2*n + p
+ 3))/(g*(n + p + 2)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m,
n, p}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p - 1, 0] &&  !LtQ[n, -1]
&& IntegerQ[2*p]

Rule 6128

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{-\tanh ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx &=\frac {\int \frac {(c-a c x)^{3/2}}{x \sqrt {1-a^2 x^2}} \, dx}{c}\\ &=-\frac {2 c \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}+\int \frac {\sqrt {c-a c x}}{x \sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {2 c \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}+\left (2 a^2 c^2\right ) \operatorname {Subst}\left (\int \frac {1}{-a^2 c+a^2 c^2 x^2} \, dx,x,\frac {\sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right )\\ &=-\frac {2 c \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}-2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 44, normalized size = 0.65 \[ -\frac {2 c \sqrt {1-a x} \left (\sqrt {a x+1}+\tanh ^{-1}\left (\sqrt {a x+1}\right )\right )}{\sqrt {c-a c x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - a*c*x]/(E^ArcTanh[a*x]*x),x]

[Out]

(-2*c*Sqrt[1 - a*x]*(Sqrt[1 + a*x] + ArcTanh[Sqrt[1 + a*x]]))/Sqrt[c - a*c*x]

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 184, normalized size = 2.71 \[ \left [\frac {{\left (a x - 1\right )} \sqrt {c} \log \left (-\frac {a^{2} c x^{2} + a c x + 2 \, \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}}{a x - 1}, -\frac {2 \, {\left ({\left (a x - 1\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) - \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}\right )}}{a x - 1}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x, algorithm="fricas")

[Out]

[((a*x - 1)*sqrt(c)*log(-(a^2*c*x^2 + a*c*x + 2*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(c) - 2*c)/(a*x^2 - x)
) + 2*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c))/(a*x - 1), -2*((a*x - 1)*sqrt(-c)*arctan(sqrt(-a^2*x^2 + 1)*sqrt(-a
*c*x + c)*sqrt(-c)/(a^2*c*x^2 - c)) - sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c))/(a*x - 1)]

________________________________________________________________________________________

giac [A]  time = 0.15, size = 82, normalized size = 1.21 \[ 2 \, {\left (\frac {\arctan \left (\frac {\sqrt {a c x + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {\sqrt {a c x + c}}{c}\right )} {\left | c \right |} - \frac {2 \, {\left (\sqrt {c} {\left | c \right |} \arctan \left (\frac {\sqrt {2} \sqrt {c}}{\sqrt {-c}}\right ) - \sqrt {2} \sqrt {-c} {\left | c \right |}\right )}}{\sqrt {-c} \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x, algorithm="giac")

[Out]

2*(arctan(sqrt(a*c*x + c)/sqrt(-c))/sqrt(-c) - sqrt(a*c*x + c)/c)*abs(c) - 2*(sqrt(c)*abs(c)*arctan(sqrt(2)*sq
rt(c)/sqrt(-c)) - sqrt(2)*sqrt(-c)*abs(c))/(sqrt(-c)*sqrt(c))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 69, normalized size = 1.01 \[ \frac {2 \sqrt {-c \left (a x -1\right )}\, \sqrt {-a^{2} x^{2}+1}\, \left (\sqrt {c}\, \arctanh \left (\frac {\sqrt {c \left (a x +1\right )}}{\sqrt {c}}\right )+\sqrt {c \left (a x +1\right )}\right )}{\left (a x -1\right ) \sqrt {c \left (a x +1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x)

[Out]

2*(-c*(a*x-1))^(1/2)*(-a^2*x^2+1)^(1/2)*(c^(1/2)*arctanh((c*(a*x+1))^(1/2)/c^(1/2))+(c*(a*x+1))^(1/2))/(a*x-1)
/(c*(a*x+1))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}}{{\left (a x + 1\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)/((a*x + 1)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {1-a^2\,x^2}\,\sqrt {c-a\,c\,x}}{x\,\left (a\,x+1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - a^2*x^2)^(1/2)*(c - a*c*x)^(1/2))/(x*(a*x + 1)),x)

[Out]

int(((1 - a^2*x^2)^(1/2)*(c - a*c*x)^(1/2))/(x*(a*x + 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- c \left (a x - 1\right )} \sqrt {- \left (a x - 1\right ) \left (a x + 1\right )}}{x \left (a x + 1\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(1/2)/(a*x+1)*(-a**2*x**2+1)**(1/2)/x,x)

[Out]

Integral(sqrt(-c*(a*x - 1))*sqrt(-(a*x - 1)*(a*x + 1))/(x*(a*x + 1)), x)

________________________________________________________________________________________