3.398 \(\int \frac {e^{2 \tanh ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx\)

Optimal. Leaf size=43 \[ -\frac {\sqrt {c-a c x}}{x}-3 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right ) \]

[Out]

-3*a*arctanh((-a*c*x+c)^(1/2)/c^(1/2))*c^(1/2)-(-a*c*x+c)^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6130, 21, 78, 63, 208} \[ -\frac {\sqrt {c-a c x}}{x}-3 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcTanh[a*x])*Sqrt[c - a*c*x])/x^2,x]

[Out]

-(Sqrt[c - a*c*x]/x) - 3*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 6130

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[(u*(c + d*x)^p*(1 + a*x)^(
n/2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rubi steps

\begin {align*} \int \frac {e^{2 \tanh ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx &=\int \frac {(1+a x) \sqrt {c-a c x}}{x^2 (1-a x)} \, dx\\ &=c \int \frac {1+a x}{x^2 \sqrt {c-a c x}} \, dx\\ &=-\frac {\sqrt {c-a c x}}{x}+\frac {1}{2} (3 a c) \int \frac {1}{x \sqrt {c-a c x}} \, dx\\ &=-\frac {\sqrt {c-a c x}}{x}-3 \operatorname {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a c}} \, dx,x,\sqrt {c-a c x}\right )\\ &=-\frac {\sqrt {c-a c x}}{x}-3 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 43, normalized size = 1.00 \[ -\frac {\sqrt {c-a c x}}{x}-3 a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*ArcTanh[a*x])*Sqrt[c - a*c*x])/x^2,x]

[Out]

-(Sqrt[c - a*c*x]/x) - 3*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]]

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 96, normalized size = 2.23 \[ \left [\frac {3 \, a \sqrt {c} x \log \left (\frac {a c x + 2 \, \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{x}\right ) - 2 \, \sqrt {-a c x + c}}{2 \, x}, \frac {3 \, a \sqrt {-c} x \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {-c}}{c}\right ) - \sqrt {-a c x + c}}{x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*a*sqrt(c)*x*log((a*c*x + 2*sqrt(-a*c*x + c)*sqrt(c) - 2*c)/x) - 2*sqrt(-a*c*x + c))/x, (3*a*sqrt(-c)*x
*arctan(sqrt(-a*c*x + c)*sqrt(-c)/c) - sqrt(-a*c*x + c))/x]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 47, normalized size = 1.09 \[ \frac {\frac {3 \, a^{2} c \arctan \left (\frac {\sqrt {-a c x + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {\sqrt {-a c x + c} a}{x}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

(3*a^2*c*arctan(sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) - sqrt(-a*c*x + c)*a/x)/a

________________________________________________________________________________________

maple [A]  time = 0.04, size = 45, normalized size = 1.05 \[ 2 a c \left (-\frac {\sqrt {-a c x +c}}{2 x a c}-\frac {3 \arctanh \left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{2 \sqrt {c}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(-a*c*x+c)^(1/2)/x^2,x)

[Out]

2*a*c*(-1/2*(-a*c*x+c)^(1/2)/x/a/c-3/2/c^(1/2)*arctanh((-a*c*x+c)^(1/2)/c^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 62, normalized size = 1.44 \[ \frac {1}{2} \, a c {\left (\frac {3 \, \log \left (\frac {\sqrt {-a c x + c} - \sqrt {c}}{\sqrt {-a c x + c} + \sqrt {c}}\right )}{\sqrt {c}} - \frac {2 \, \sqrt {-a c x + c}}{a c x}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

1/2*a*c*(3*log((sqrt(-a*c*x + c) - sqrt(c))/(sqrt(-a*c*x + c) + sqrt(c)))/sqrt(c) - 2*sqrt(-a*c*x + c)/(a*c*x)
)

________________________________________________________________________________________

mupad [B]  time = 0.84, size = 35, normalized size = 0.81 \[ -\frac {\sqrt {c-a\,c\,x}}{x}-3\,a\,\sqrt {c}\,\mathrm {atanh}\left (\frac {\sqrt {c-a\,c\,x}}{\sqrt {c}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((c - a*c*x)^(1/2)*(a*x + 1)^2)/(x^2*(a^2*x^2 - 1)),x)

[Out]

- (c - a*c*x)^(1/2)/x - 3*a*c^(1/2)*atanh((c - a*c*x)^(1/2)/c^(1/2))

________________________________________________________________________________________

sympy [B]  time = 19.59, size = 119, normalized size = 2.77 \[ \frac {a c^{2} \sqrt {\frac {1}{c^{3}}} \log {\left (- c^{2} \sqrt {\frac {1}{c^{3}}} + \sqrt {- a c x + c} \right )}}{2} - \frac {a c^{2} \sqrt {\frac {1}{c^{3}}} \log {\left (c^{2} \sqrt {\frac {1}{c^{3}}} + \sqrt {- a c x + c} \right )}}{2} + \frac {2 a c \operatorname {atan}{\left (\frac {\sqrt {- a c x + c}}{\sqrt {- c}} \right )}}{\sqrt {- c}} - \frac {\sqrt {- a c x + c}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a*c*x+c)**(1/2)/x**2,x)

[Out]

a*c**2*sqrt(c**(-3))*log(-c**2*sqrt(c**(-3)) + sqrt(-a*c*x + c))/2 - a*c**2*sqrt(c**(-3))*log(c**2*sqrt(c**(-3
)) + sqrt(-a*c*x + c))/2 + 2*a*c*atan(sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) - sqrt(-a*c*x + c)/x

________________________________________________________________________________________