3.393 \(\int e^{2 \tanh ^{-1}(a x)} x^3 \sqrt {c-a c x} \, dx\)

Optimal. Leaf size=101 \[ -\frac {2 (c-a c x)^{9/2}}{9 a^4 c^4}+\frac {10 (c-a c x)^{7/2}}{7 a^4 c^3}-\frac {18 (c-a c x)^{5/2}}{5 a^4 c^2}+\frac {14 (c-a c x)^{3/2}}{3 a^4 c}-\frac {4 \sqrt {c-a c x}}{a^4} \]

[Out]

14/3*(-a*c*x+c)^(3/2)/a^4/c-18/5*(-a*c*x+c)^(5/2)/a^4/c^2+10/7*(-a*c*x+c)^(7/2)/a^4/c^3-2/9*(-a*c*x+c)^(9/2)/a
^4/c^4-4*(-a*c*x+c)^(1/2)/a^4

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {6130, 21, 77} \[ -\frac {2 (c-a c x)^{9/2}}{9 a^4 c^4}+\frac {10 (c-a c x)^{7/2}}{7 a^4 c^3}-\frac {18 (c-a c x)^{5/2}}{5 a^4 c^2}+\frac {14 (c-a c x)^{3/2}}{3 a^4 c}-\frac {4 \sqrt {c-a c x}}{a^4} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])*x^3*Sqrt[c - a*c*x],x]

[Out]

(-4*Sqrt[c - a*c*x])/a^4 + (14*(c - a*c*x)^(3/2))/(3*a^4*c) - (18*(c - a*c*x)^(5/2))/(5*a^4*c^2) + (10*(c - a*
c*x)^(7/2))/(7*a^4*c^3) - (2*(c - a*c*x)^(9/2))/(9*a^4*c^4)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 6130

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[(u*(c + d*x)^p*(1 + a*x)^(
n/2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rubi steps

\begin {align*} \int e^{2 \tanh ^{-1}(a x)} x^3 \sqrt {c-a c x} \, dx &=\int \frac {x^3 (1+a x) \sqrt {c-a c x}}{1-a x} \, dx\\ &=c \int \frac {x^3 (1+a x)}{\sqrt {c-a c x}} \, dx\\ &=c \int \left (\frac {2}{a^3 \sqrt {c-a c x}}-\frac {7 \sqrt {c-a c x}}{a^3 c}+\frac {9 (c-a c x)^{3/2}}{a^3 c^2}-\frac {5 (c-a c x)^{5/2}}{a^3 c^3}+\frac {(c-a c x)^{7/2}}{a^3 c^4}\right ) \, dx\\ &=-\frac {4 \sqrt {c-a c x}}{a^4}+\frac {14 (c-a c x)^{3/2}}{3 a^4 c}-\frac {18 (c-a c x)^{5/2}}{5 a^4 c^2}+\frac {10 (c-a c x)^{7/2}}{7 a^4 c^3}-\frac {2 (c-a c x)^{9/2}}{9 a^4 c^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 48, normalized size = 0.48 \[ -\frac {2 \left (35 a^4 x^4+85 a^3 x^3+102 a^2 x^2+136 a x+272\right ) \sqrt {c-a c x}}{315 a^4} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(2*ArcTanh[a*x])*x^3*Sqrt[c - a*c*x],x]

[Out]

(-2*Sqrt[c - a*c*x]*(272 + 136*a*x + 102*a^2*x^2 + 85*a^3*x^3 + 35*a^4*x^4))/(315*a^4)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 44, normalized size = 0.44 \[ -\frac {2 \, {\left (35 \, a^{4} x^{4} + 85 \, a^{3} x^{3} + 102 \, a^{2} x^{2} + 136 \, a x + 272\right )} \sqrt {-a c x + c}}{315 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^3*(-a*c*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/315*(35*a^4*x^4 + 85*a^3*x^3 + 102*a^2*x^2 + 136*a*x + 272)*sqrt(-a*c*x + c)/a^4

________________________________________________________________________________________

giac [B]  time = 0.48, size = 189, normalized size = 1.87 \[ -\frac {2 \, {\left (\frac {9 \, {\left (5 \, {\left (a c x - c\right )}^{3} \sqrt {-a c x + c} + 21 \, {\left (a c x - c\right )}^{2} \sqrt {-a c x + c} c - 35 \, {\left (-a c x + c\right )}^{\frac {3}{2}} c^{2} + 35 \, \sqrt {-a c x + c} c^{3}\right )}}{a^{3} c^{3}} + \frac {35 \, {\left (a c x - c\right )}^{4} \sqrt {-a c x + c} + 180 \, {\left (a c x - c\right )}^{3} \sqrt {-a c x + c} c + 378 \, {\left (a c x - c\right )}^{2} \sqrt {-a c x + c} c^{2} - 420 \, {\left (-a c x + c\right )}^{\frac {3}{2}} c^{3} + 315 \, \sqrt {-a c x + c} c^{4}}{a^{3} c^{4}}\right )}}{315 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^3*(-a*c*x+c)^(1/2),x, algorithm="giac")

[Out]

-2/315*(9*(5*(a*c*x - c)^3*sqrt(-a*c*x + c) + 21*(a*c*x - c)^2*sqrt(-a*c*x + c)*c - 35*(-a*c*x + c)^(3/2)*c^2
+ 35*sqrt(-a*c*x + c)*c^3)/(a^3*c^3) + (35*(a*c*x - c)^4*sqrt(-a*c*x + c) + 180*(a*c*x - c)^3*sqrt(-a*c*x + c)
*c + 378*(a*c*x - c)^2*sqrt(-a*c*x + c)*c^2 - 420*(-a*c*x + c)^(3/2)*c^3 + 315*sqrt(-a*c*x + c)*c^4)/(a^3*c^4)
)/a

________________________________________________________________________________________

maple [A]  time = 0.03, size = 45, normalized size = 0.45 \[ -\frac {2 \sqrt {-a c x +c}\, \left (35 x^{4} a^{4}+85 x^{3} a^{3}+102 a^{2} x^{2}+136 a x +272\right )}{315 a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*x^3*(-a*c*x+c)^(1/2),x)

[Out]

-2/315*(-a*c*x+c)^(1/2)*(35*a^4*x^4+85*a^3*x^3+102*a^2*x^2+136*a*x+272)/a^4

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 74, normalized size = 0.73 \[ -\frac {2 \, {\left (35 \, {\left (-a c x + c\right )}^{\frac {9}{2}} - 225 \, {\left (-a c x + c\right )}^{\frac {7}{2}} c + 567 \, {\left (-a c x + c\right )}^{\frac {5}{2}} c^{2} - 735 \, {\left (-a c x + c\right )}^{\frac {3}{2}} c^{3} + 630 \, \sqrt {-a c x + c} c^{4}\right )}}{315 \, a^{4} c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^3*(-a*c*x+c)^(1/2),x, algorithm="maxima")

[Out]

-2/315*(35*(-a*c*x + c)^(9/2) - 225*(-a*c*x + c)^(7/2)*c + 567*(-a*c*x + c)^(5/2)*c^2 - 735*(-a*c*x + c)^(3/2)
*c^3 + 630*sqrt(-a*c*x + c)*c^4)/(a^4*c^4)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 83, normalized size = 0.82 \[ \frac {14\,{\left (c-a\,c\,x\right )}^{3/2}}{3\,a^4\,c}-\frac {4\,\sqrt {c-a\,c\,x}}{a^4}-\frac {18\,{\left (c-a\,c\,x\right )}^{5/2}}{5\,a^4\,c^2}+\frac {10\,{\left (c-a\,c\,x\right )}^{7/2}}{7\,a^4\,c^3}-\frac {2\,{\left (c-a\,c\,x\right )}^{9/2}}{9\,a^4\,c^4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^3*(c - a*c*x)^(1/2)*(a*x + 1)^2)/(a^2*x^2 - 1),x)

[Out]

(14*(c - a*c*x)^(3/2))/(3*a^4*c) - (4*(c - a*c*x)^(1/2))/a^4 - (18*(c - a*c*x)^(5/2))/(5*a^4*c^2) + (10*(c - a
*c*x)^(7/2))/(7*a^4*c^3) - (2*(c - a*c*x)^(9/2))/(9*a^4*c^4)

________________________________________________________________________________________

sympy [A]  time = 10.43, size = 83, normalized size = 0.82 \[ \frac {2 \left (- 2 c^{4} \sqrt {- a c x + c} + \frac {7 c^{3} \left (- a c x + c\right )^{\frac {3}{2}}}{3} - \frac {9 c^{2} \left (- a c x + c\right )^{\frac {5}{2}}}{5} + \frac {5 c \left (- a c x + c\right )^{\frac {7}{2}}}{7} - \frac {\left (- a c x + c\right )^{\frac {9}{2}}}{9}\right )}{a^{4} c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*x**3*(-a*c*x+c)**(1/2),x)

[Out]

2*(-2*c**4*sqrt(-a*c*x + c) + 7*c**3*(-a*c*x + c)**(3/2)/3 - 9*c**2*(-a*c*x + c)**(5/2)/5 + 5*c*(-a*c*x + c)**
(7/2)/7 - (-a*c*x + c)**(9/2)/9)/(a**4*c**4)

________________________________________________________________________________________