3.384 \(\int \frac {e^{\tanh ^{-1}(x)}}{(1+x)^{3/2}} \, dx\)

Optimal. Leaf size=23 \[ -\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right ) \]

[Out]

-arctanh(1/2*(1-x)^(1/2)*2^(1/2))*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6129, 63, 206} \[ -\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[x]/(1 + x)^(3/2),x]

[Out]

-(Sqrt[2]*ArcTanh[Sqrt[1 - x]/Sqrt[2]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(x)}}{(1+x)^{3/2}} \, dx &=\int \frac {1}{\sqrt {1-x} (1+x)} \, dx\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{2-x^2} \, dx,x,\sqrt {1-x}\right )\right )\\ &=-\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 23, normalized size = 1.00 \[ -\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTanh[x]/(1 + x)^(3/2),x]

[Out]

-(Sqrt[2]*ArcTanh[Sqrt[1 - x]/Sqrt[2]])

________________________________________________________________________________________

fricas [B]  time = 0.60, size = 45, normalized size = 1.96 \[ \frac {1}{2} \, \sqrt {2} \log \left (-\frac {x^{2} + 2 \, \sqrt {2} \sqrt {-x^{2} + 1} \sqrt {x + 1} - 2 \, x - 3}{x^{2} + 2 \, x + 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)^(1/2)/(-x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(2)*log(-(x^2 + 2*sqrt(2)*sqrt(-x^2 + 1)*sqrt(x + 1) - 2*x - 3)/(x^2 + 2*x + 1))

________________________________________________________________________________________

giac [B]  time = 0.31, size = 37, normalized size = 1.61 \[ -\frac {1}{2} \, \sqrt {2} \log \left (\sqrt {2} + \sqrt {-x + 1}\right ) + \frac {1}{2} \, \sqrt {2} \log \left (\sqrt {2} - \sqrt {-x + 1}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)^(1/2)/(-x^2+1)^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*log(sqrt(2) + sqrt(-x + 1)) + 1/2*sqrt(2)*log(sqrt(2) - sqrt(-x + 1))

________________________________________________________________________________________

maple [B]  time = 0.03, size = 40, normalized size = 1.74 \[ -\frac {\sqrt {-x^{2}+1}\, \sqrt {2}\, \arctanh \left (\frac {\sqrt {1-x}\, \sqrt {2}}{2}\right )}{\sqrt {1+x}\, \sqrt {1-x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+x)^(1/2)/(-x^2+1)^(1/2),x)

[Out]

-1/(1+x)^(1/2)*(-x^2+1)^(1/2)/(1-x)^(1/2)*2^(1/2)*arctanh(1/2*(1-x)^(1/2)*2^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {-x^{2} + 1} \sqrt {x + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)^(1/2)/(-x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-x^2 + 1)*sqrt(x + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \[ \int \frac {1}{\sqrt {1-x^2}\,\sqrt {x+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1 - x^2)^(1/2)*(x + 1)^(1/2)),x)

[Out]

int(1/((1 - x^2)^(1/2)*(x + 1)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {- \left (x - 1\right ) \left (x + 1\right )} \sqrt {x + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)**(1/2)/(-x**2+1)**(1/2),x)

[Out]

Integral(1/(sqrt(-(x - 1)*(x + 1))*sqrt(x + 1)), x)

________________________________________________________________________________________