3.376 \(\int e^{\tanh ^{-1}(x)} \sqrt {1+x} \, dx\)

Optimal. Leaf size=25 \[ \frac {2}{3} (1-x)^{3/2}-4 \sqrt {1-x} \]

[Out]

2/3*(1-x)^(3/2)-4*(1-x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6129, 43} \[ \frac {2}{3} (1-x)^{3/2}-4 \sqrt {1-x} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[x]*Sqrt[1 + x],x]

[Out]

-4*Sqrt[1 - x] + (2*(1 - x)^(3/2))/3

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(x)} \sqrt {1+x} \, dx &=\int \frac {1+x}{\sqrt {1-x}} \, dx\\ &=\int \left (\frac {2}{\sqrt {1-x}}-\sqrt {1-x}\right ) \, dx\\ &=-4 \sqrt {1-x}+\frac {2}{3} (1-x)^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 16, normalized size = 0.64 \[ -\frac {2}{3} \sqrt {1-x} (x+5) \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTanh[x]*Sqrt[1 + x],x]

[Out]

(-2*Sqrt[1 - x]*(5 + x))/3

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 19, normalized size = 0.76 \[ -\frac {2 \, \sqrt {-x^{2} + 1} {\left (x + 5\right )}}{3 \, \sqrt {x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(-x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(-x^2 + 1)*(x + 5)/sqrt(x + 1)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(-x^2+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.03, size = 23, normalized size = 0.92 \[ \frac {2 \left (-1+x \right ) \left (x +5\right ) \sqrt {1+x}}{3 \sqrt {-x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)/(-x^2+1)^(1/2),x)

[Out]

2/3*(-1+x)*(x+5)*(1+x)^(1/2)/(-x^2+1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.30, size = 17, normalized size = 0.68 \[ \frac {2 \, {\left (x^{2} + 4 \, x - 5\right )}}{3 \, \sqrt {-x + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(-x^2+1)^(1/2),x, algorithm="maxima")

[Out]

2/3*(x^2 + 4*x - 5)/sqrt(-x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.85, size = 31, normalized size = 1.24 \[ -\frac {2\,x\,\sqrt {1-x^2}+10\,\sqrt {1-x^2}}{3\,\sqrt {x+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)^(3/2)/(1 - x^2)^(1/2),x)

[Out]

-(2*x*(1 - x^2)^(1/2) + 10*(1 - x^2)^(1/2))/(3*(x + 1)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (x + 1\right )^{\frac {3}{2}}}{\sqrt {- \left (x - 1\right ) \left (x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)/(-x**2+1)**(1/2),x)

[Out]

Integral((x + 1)**(3/2)/sqrt(-(x - 1)*(x + 1)), x)

________________________________________________________________________________________