3.370 \(\int \frac {e^{\tanh ^{-1}(x)}}{(1+x)^2} \, dx\)

Optimal. Leaf size=18 \[ -\frac {\sqrt {1-x}}{\sqrt {x+1}} \]

[Out]

-(1-x)^(1/2)/(1+x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6129, 37} \[ -\frac {\sqrt {1-x}}{\sqrt {x+1}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[x]/(1 + x)^2,x]

[Out]

-(Sqrt[1 - x]/Sqrt[1 + x])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 6129

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[(u*(1 + (d*x)/c)
^p*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(x)}}{(1+x)^2} \, dx &=\int \frac {1}{\sqrt {1-x} (1+x)^{3/2}} \, dx\\ &=-\frac {\sqrt {1-x}}{\sqrt {1+x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 18, normalized size = 1.00 \[ -\frac {\sqrt {1-x}}{\sqrt {x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTanh[x]/(1 + x)^2,x]

[Out]

-(Sqrt[1 - x]/Sqrt[1 + x])

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 19, normalized size = 1.06 \[ -\frac {x + \sqrt {-x^{2} + 1} + 1}{x + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)/(-x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-(x + sqrt(-x^2 + 1) + 1)/(x + 1)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 21, normalized size = 1.17 \[ \frac {2}{\frac {\sqrt {-x^{2} + 1} - 1}{x} - 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)/(-x^2+1)^(1/2),x, algorithm="giac")

[Out]

2/((sqrt(-x^2 + 1) - 1)/x - 1)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 14, normalized size = 0.78 \[ \frac {-1+x}{\sqrt {-x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+x)/(-x^2+1)^(1/2),x)

[Out]

(-1+x)/(-x^2+1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 16, normalized size = 0.89 \[ -\frac {\sqrt {-x^{2} + 1}}{x + 1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)/(-x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-sqrt(-x^2 + 1)/(x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 13, normalized size = 0.72 \[ \frac {x-1}{\sqrt {1-x^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1 - x^2)^(1/2)*(x + 1)),x)

[Out]

(x - 1)/(1 - x^2)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {- \left (x - 1\right ) \left (x + 1\right )} \left (x + 1\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)/(-x**2+1)**(1/2),x)

[Out]

Integral(1/(sqrt(-(x - 1)*(x + 1))*(x + 1)), x)

________________________________________________________________________________________